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a b s t r a c t

A solution of magnetoelastic stresses on a three-phase composite cylinder subjected to a
remote uniform magnetic induction is derived in this study. Based upon the complex var-
iable theory and the method of analytical continuation together with alternating tech-
nique, the general expressions of both the magnetic and the magnetoelastic field
quantities can be obtained. The variations of the magnetoelastic stress on various param-
eters are displayed in graphic form. Comparisons between the results of this work and the
existing solutions in literature under special cases reveal that the present solution is cor-
rect and general.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, the use of composite materials in engineering application increases rapidly. Therefore, the stress
analysis of layered media has been investigated by earlier researchers. Due to the necessity in considering the boundary con-
ditions on each of the multiple interfaces for such a problem, the solving process becomes more complicated as comparing
with the homogeneous counterpart. Thus the stress analysis of multi-layered media problem results in finding the solution
for a system of simultaneous equations with a lot of unknown constants as derived by Iyengar and Alwar [1] and Chen [2].
Nevertheless, several methods have been developed to provide an efficient approach in studying the elastic problem of mul-
ti-layered media. Such as Bulfer [3] used the method of transfer matrix which is expressed in terms of the infinite series
expansion and can be solved with various orders of approximation, Lin and Keer [4] applied the flexibility matrix approach
with the boundary integral formulation to solve the elastic problem of a vertical crack in a multi-layered medium. Based
upon the alternating technique, Choi and Earmme [5] conducted the stress analysis of the singularity problem in an isotropic
plane layered trimaterial. Comparing with the aforementioned studies of straight interfaces, the corresponding problem of
circular interfaces may involve more mathematical complexity. Several investigators considered the elastic problem of a
three-phase cylinder. As denoted by Benveniste et al. [6], a three-phase circular boundary problem with perfect interfaces
can be transformed into a corresponding two-phase problem with imperfect interface by letting the thickness of intermedi-
ate phase tends to zero. Luo [7] employed the Laurent series expansion and the method of analytical continuation to find a
solution for the elastic problem of three-phase composite cylinder with an edge dislocation at the intermediate annular re-
gion. By the use of heterogenization technique, Honein et al. [8] considered the anti-plane elastostatics of circularly cylin-
drical and plane layered media. Chao et al. [9] used the alternating technique with analytic continuation to obtain the

0020-7225/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijengsci.2010.01.002

* Corresponding author. Present address: 100, Ciao Guang Rd., Taichung 407, Taiwan, ROC. Tel.: +886 4 27016855x1201; fax: +886 4 24527824.
E-mail address: cblin@ocu.edu.tw (C.-B. Lin).

International Journal of Engineering Science 48 (2010) 529–549

Contents lists available at ScienceDirect

International Journal of Engineering Science

journal homepage: www.elsevier .com/locate / i jengsci



Author's personal copy

stress evoked by a point force. To the authors’ knowledge, the magnetoelastic problem of a three-phase cylinder is still a new
topic and cannot be found in the literature.

Due to the possible application of a structure in a magnetic environment, the interaction between the magnetic field and
the deformation of the structure is a relevant concern. Especially in an environment of strong magnetic field, such as mag-
netic fusion reactor and magnetic levitated vehicles, the analysis of magnetoelastic interaction is necessary in considering
the safety of structure. Just like that in the pure elastic case, the application of composite material is also competent in
the magnetoelastic one. For the problem associated with inhomogeneities in magnetoelasticity, Maugin et al. [10] presented
a theoretic formulation of nonlinear anisotropic inhomogeneous electromagnetoelasticity. Lin [11] used the technique of
conformal mapping and the method of analytical continuation to find the magnetic and the magnetoelastic fields on both
the matrix and a perfectly bonded elliptic inclusion. Based upon the complex variable theory and the method of analytical
continuation, Lin and Chen [12] found the magnetoelastic stresses on a circular shell subjected to a point magnetic source or
a remote uniform magnetic induction. By applying the Laurent series expansion and expanding the definition of Airy’s stress
function to magnetoelasticity, Chen and Lin [13] obtained the magnetoelastic fields for an infinite matrix with multiple cir-
cular inclusions.

In this study, we applied the formulation of magnetoelasticity in complex variable form and the alternating technique to
derive the magnetic field and the magnetoelastic field in a three-phase composite cylinder under a remote uniform magnetic
induction. The distributions of magnetoelastic stress are displayed graphically and the results of this study are compared
with the previous studies under special cases.

2. Magnetic field

The magnetic induction can be expressed in terms of a complex potential function as

Bx þ iBy ¼ l0lrðHx þ iHyÞ ¼ l0lrh
0ðzÞ ð1Þ

where Bi and Hk denote magnetic induction (or magnetic flux density) and magnetic intensity; l0 = 4p�10�7 newton/am-
pere2 is a universal constant and lr is relative magnetic permeability. The complex potential function h(z) of magnetic field
is an analytic function in terms of the complex variable z = x + iy and can be represented as

hðzÞ ¼ uðx; yÞ þ icðx; yÞ ð2Þ

where u(x, y) and c(x, y) denote the real and the imaginary parts of h(z). With the integration along the boundary of a body,

Z
ðHxdxþ HydyÞ ¼

Z
@u
@x

dxþ @u
@y

dy
� �

¼ u;Z
ðBxnx þ BynyÞds ¼

Z
Bx

dy
ds
� By

dx
ds

� �
ds ¼

Z
l0lr

@c
@y

dyþ @c
@x

dx
� �

¼ l0lrc ð3Þ

the boundary conditions can be described as the continuation of u and l0lrc across the interface. Consider a composite cyl-
inder with three dissimilar isotropic ferromagnetic materials bonded along two concentric interfaces L and L*, under a uni-
form magnetic induction as shown in Fig. 1. Three different materials a, b and c occupy the concentric regions Sa, Sb and Sc,
respectively. The magnetic fields on the trimaterial cylinder under a uniform magnetic induction can be found by applying
the alternating technique.

Step 1: analytic continuation across the interface L
In the first step, the regions Sa and Sb are regarded to be composed of the same material b and the region Sc is consisted of

material c. The magnetic potential function can be represented as

h1bðzÞ ¼
h1ðzÞ z 2 Sa [ Sb

h0ðzÞ þ hc0ðzÞ z 2 Sc

�
ð4Þ

where the subscript 1b in h1b(z) denotes the first time to consider the continuity conditions across the interface L(i.e. r = b).
The symbol h0(z) represents the complex potential function of the applied uniform magnetic induction, h1(z) is holomorphic
in the interior region Sa [ Sb and hc0(z) is holomorphic in the exterior region Sc. Notice that the complex potential function
h0(z) = (B0/l0lrc)e�icz of the applied magnetic induction is holomorphic in an interior region containing the origin. As shown
in Fig. 1, the applied magnetic induction with strength B0 is assumed to be conducted along the direction having at an angle c
with respect to x1-axis. Furthermore, the appearance of lrc is due to that a remote uniform magnetic induction is applied into
the exterior region Sc. Applying the boundary conditions of magnetic filed across L, one can obtain

h1ðqbÞ þ h1ðqbÞ ¼ h0ðqbÞ þ h0ðqbÞ þ hc0ðqbÞ þ hc0ðqbÞ ð5Þ

lrb h1ðqbÞ � h1ðqbÞ
h i

¼ lrc h0ðqbÞ � h0ðqbÞ þ hc0ðqbÞ � hc0ðqbÞ
h i

ð6Þ
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where qb = beih with the phase angle h shown in Fig. 1. Via the use of analytic continuation, we have

h1ðzÞ ¼ h0ðzÞ þ �hc0
b2

z

 !
z 2 Sa [ Sb ð7Þ

lrbh1ðzÞ ¼ lrc h0ðzÞ � �hc0
b2

z

 !" #
z 2 Sa [ Sb ð8Þ

which is holomorphic in the interior region Sa [ Sb and

�h1
b2

z

 !
¼ �h0

b2

z

 !
þ hc0ðzÞ z 2 Sc ð9Þ

lrb
�h1

b2

z

 !
¼ lrc

�h0
b2

z

 !
� hc0ðzÞ

" #
z 2 Sc ð10Þ

is holomorphic in the exterior region Sc. It is remarked that the symbol �hc0ðb2
=zÞ indicates that the complex conjugate of the

coefficients (rather than argument) in the corresponding function is taken. The complex potential functions h1(z) and hc0(z)
can be solved from Eqs. (7)–(10) as

h1ðzÞ ¼ Ubch0ðzÞ; hc0ðzÞ ¼ Vbc
�h0

b2

z

 !
ð11Þ

where

Ubc ¼
2lrc

lrc þ lrb
; Vbc ¼

lrc � lrb

lrc þ lrb
ð12Þ

Step 2: analytic continuation across the interface L*

In this step, it is assumed that the region Sa is made of material a and the regions Sb and Sc are composed of the same
material b. The complex potential function h1(z), which is holomorphic in the interior region Sa [ Sb as shown in Eq. (4), will
induce a complex potential function ha1(z) holomorphic in the interior region Sa and a complex potential function hb1(z) holo-
morphic in the exterior region Sb [ Sc. Thus the boundary conditions of magnetic fields yield

ha1ðqaÞ þ ha1ðqaÞ ¼ h1ðqaÞ þ h1ðqaÞ þ hb1ðqaÞ þ hb1ðqaÞ ð13Þ

lra ha1ðqaÞ � ha1ðqaÞ
h i

¼ lrb h1ðqaÞ � h1ðqaÞ þ hb1ðqaÞ � hb1ðqaÞ
h i

ð14Þ
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Fig. 1. A three-phase cylinder subjected to a remote uniform magnetic induction.
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where qa = aeih. By the use of analytic continuation, one can obtain

ha1ðzÞ ¼ h1ðzÞ þ �hb1
a2

z

� �
z 2 Sa ð15Þ

lraha1ðzÞ ¼ lrb h1ðzÞ � �hb1
a2

z

� �� �
z 2 Sa ð16Þ

and

�ha1
a2

z

� �
¼ �h1

a2

z

� �
þ hb1ðzÞ z 2 Sb [ Sc ð17Þ

lra
�ha1

a2

z

� �� �
¼ lrb

�h1
a2

z

� �
� hb1ðzÞ

� �
z 2 Sb [ Sc ð18Þ

The complex potential functions ha1(z) and hb1(z) can be found from Eqs. (15)–(18) as

ha1ðzÞ ¼ Uabh1ðzÞ; hb1ðzÞ ¼ Vab
�h1

a2

z

� �
ð19Þ

where

Uab ¼
2lrb

lrb þ lra
; Vab ¼

lrb � lra

lrb þ lra
ð20Þ

Step 3: analytic continuation across the interface L
Just like that in step 1, the regions Sa and Sb are composed of the same material b and the region Sc is consisted of material

c in this step. Thus the complex potential function hb1(z), which is holomorphic in the exterior region Sb [ Sc as shown in Eq.
(17), will cause a complex potential function h2(z) holomorphic in the interior region Sa [ Sb and a complex potential function
hc1(z) holomorphic in the exterior region Sc. Similar to the solving process given in step 1, one can apply the boundary con-
ditions of magnetic filed across L to obtain

hb1ðqbÞ þ hb1ðqbÞ þ h2ðqbÞ þ h2ðqbÞ ¼ hc1ðqbÞ þ hc1ðqbÞ ð21Þ

lrb hb1ðqbÞ � hb1ðqbÞ þ h2ðqbÞ � h2ðqbÞ
h i

¼ lrc hc1ðqbÞ � hc1ðqbÞ
h i

ð22Þ

Therefore, these equations can be solved by employing the method of analytic continuation. It renders

h2ðzÞ ¼ Vcb
�hb1

b2

z

 !
; hc1ðzÞ ¼ Ucbhb1ðzÞ ð23Þ

Step 4: repetition of steps 2 and 3
Applying the method of analytic continuation repeatedly across two interfaces L* and L just like that in steps 2 and 3, one

can find the increments of the complex potential functions han(z), hbn(z), hcn(z) and hn+1(z) for n = 2,3,4, . . .. The alternating
technique denotes such processes. Taking the summation of all the increments will form the complete solution of magnetic
potential function as

hðzÞ ¼

P1
n¼1

hanðzÞ z 2 Sa

P1
n¼1
½hnðzÞ þ hbnðzÞ� z 2 Sb

h0ðzÞ þ
P1
n¼0

hcnðzÞ z 2 Sc

8>>>>>>><
>>>>>>>:

ð24Þ

Referring to Eqs. (19) and (23), the functions han(z), hbn(z) and hcn(z) can be expressed in terms of hn(z) for n P 1. By the use of
such expressions and Eq. (11), the function h(z) becomes

hðzÞ ¼

Uab
P1
n¼1

hnðzÞ z 2 Sa

P1
n¼1

hnðzÞ þ Vab
�hn

a2

z

� �h i
z 2 Sb

h0ðzÞ þ Vbc
�h0

b2

z

� �
þ UcbVab

P1
n¼1

�hn
a2

z

� �
z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð25Þ
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The recurrence formula of hn(z) can be derived from Eqs. (11), (19) and (23). It gives

hnþ1ðzÞ ¼
Ubch0ðzÞ for n ¼ 0

VcbVabhn
a2

b2 z
� �

for n ¼ 1;2;3; . . .

(
ð26Þ

As mentioned in the previous paragraph, the corresponding complex potential function for a remote uniform magnetic
induction can be written as

h0ðzÞ ¼ H0e�icz ð27Þ

where

H0 ¼
B0

l0lrc
ð28Þ

Referring to Eqs. (12) and (20), the quantities Vcb and Vab are found to be less than 1. Thus
P1

n¼1hnðzÞ is a convergent series
and the substitution of h0(z) into Eqs. (25) and (26) gives rise to

hðzÞ ¼

UabUbcH0e�ic

1�a2

b2VcbVab
z z 2 Sa

UbcH0

1�a2

b2VcbVab
e�iczþ Vabeic a2

z

� �
z 2 Sb

H0 e�iczþ Vbc
b2

a2 þ UcbVabUbc

1�a2

b2VcbVab

� �
a2eic

z

� �
z 2 Sc

8>>>>>>><
>>>>>>>:

ð29Þ

3. Magnetoelastic field

The components of traction force and displacement can be represented in terms of two complex potential functions /(z)
and w(z) of magnetoelastic stress fields as [13]

fx þ ify ¼ �i /ðzÞ þ z/0ðzÞ þ wðzÞ þ Gl0v
ðkþ 2GÞhðzÞh

0ðzÞ � l0ðlr þ vÞ
2

Z B

A
h0ðzÞh0ðzÞd�z

� �
ð30Þ

ux þ iuy ¼
1

2G
j/ðzÞ � z/0ðzÞ � wðzÞ � Gl0v

ðkþ 2GÞhðzÞh
0ðzÞ

� �
ð31Þ

where G is the shear modulus, j = (k + 3G)/(k + G) = 3 � 4m for plane strain with m being the Poisson’s ratio [14] and
v(= lr � 1) denotes the magnetic susceptibility. It is remarked that Eqs. (30) and (31) are continuous across the material
boundary and those terms related to body force are omitted in these two equations. The magnetoelastic stresses in polar
coordinates can be expressed with /(z) and w(z) as [15]

trr þ thh ¼ 2 /0ðzÞ þ /0ðzÞ
h i

� kl0v
kþ 2G

h0ðzÞh0ðzÞ ð32Þ

ðtrr þ itrhÞ ¼ /0ðzÞ þ /0ðzÞ
h i

� kl0v
2ðkþ 2GÞh

0ðzÞh0ðzÞ

� z/00ðzÞ þ w0ðzÞ þ Gl0v
kþ 2G

hðzÞh00ðzÞ � l0v
2

h0ðzÞh0ðzÞ
� 	

�z
z

ð33Þ

Since there are circular interfaces in the present problem, it is convenient to rearranged Eqs. (30) and (31) for a region
bounded by a circle r = c as

� fy þ ifx ¼ /ðzÞ þxðzÞ � c2

�z
� z

� �
/0ðzÞ þ Gl0v

ðkþ 2GÞhðzÞ h0ðzÞ � h0
c2

z

� �� �

þ Gl0v
ðkþ 2GÞ hðzÞh

0 c2

z

� �
� l0ðlr þ vÞ

2
gðzÞ ð34Þ

ux þ iuy ¼
1

2G
j/ðzÞ �xðzÞ þ c2

�z
� z

� �
/0ðzÞ � Gl0v

ðkþ 2GÞ hðzÞ h0ðzÞ � h0
c2

z

� �� �
� Gl0v
ðkþ 2GÞ hðzÞh

0 c2

z

� �� 	
ð35Þ

where

xðzÞ ¼ c2

z
/0ðzÞ þ wðzÞ; gðzÞ ¼

Z B

A
h0ðzÞh0ðzÞdz ð36Þ
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The corresponding magnetoelastic stresses in Eq. (33) becomes

trr þ itrh ¼ /0ðzÞ �
�z
z
x0ðzÞ þ 1� c2

z�z

� �
/0ðzÞ þ c2

z
� �z

� �
/00ðzÞ þ /0ðzÞ � kl0v

2ðkþ 2GÞh
0ðzÞh0 c2

z

� �

� kl0v
2ðkþ 2GÞh

0ðzÞ h0ðzÞ � h0
c2

z

� �� �
� Gl0v

kþ 2G
�z
z

hðzÞh00 c2

z

� �
� Gl0v

kþ 2G
�z
z

hðzÞ h00ðzÞ � h00
c2

z

� �� �

þ l0v
2

�z
z

h0
c2

z

� �
h0

c2

z

� �
þ l0v

2
�z
z

h0ðzÞh0ðzÞ � h0
c2

z

� �
h0

c2

z

� �� �
ð37Þ

Notice that both Eqs. (34) and (35) are also continuous across the boundary of material interface. By applying the alter-
nating technique with the magnetic fields in Eq. (25), the magnetoelastic fields on the trimaterial cylinder under a uniform
magnetic induction can be found.

Step 1: analytic continuation across the interface L
In the first step, the regions Sa and Sb are regarded to be composed of the same material b and the region Sc is consisted of

material c. The magnetoelastic potential functions can be represent as

/1bðzÞ ¼
/bmðzÞ
/cmðzÞ

�
;x1b ¼

xbmðzÞ z 2 Sa [ Sb

xcmðzÞ z 2 Sc

�
ð38Þ

where the subscript 1b in h1b(z) denotes the first time to consider the continuity conditions across the interface L(i.e. r = b).
The complex potential functions /bm(z) and xbm(z) are holomorphic in the interior region Sa [ Sb, /cm(z) and xcm(z) are holo-
morphic in the exterior region Sc. Using Eq. (29) and replacing c with b in Eqs. (34) and (35), the continuity conditions of
traction and displacement across the material interface L render

/bmðqbÞ þxbmðqbÞ þ
Gbl0vb

kb þ 2Gb
hbðqbÞh

0
bðqbÞ �

l0ðlrb þ vbÞ
2

gbðqbÞ ¼ /cmðqbÞ þxcmðqbÞ

þ Gcl0vc

kc þ 2Gc
hcðqbÞh

0
cðqbÞ �

l0ðlrc þ vcÞ
2

gcðqbÞ ð39Þ

1
2Gb

jb/bmðqbÞ �xbmðqbÞ �
Gbl0vb

kb þ 2Gb
hbðqbÞh

0
bðqbÞ

� �
¼ 1

2Gc
jc/cmðqbÞ �xcmðqbÞ �

Gcl0vc

kc þ 2Gc
hcðqbÞh

0
cðqbÞ

� �
ð40Þ

where qb = beih was defined in the previous section. The complex potential functions

hbðzÞ ¼
UbcH0

1� a2

b2 VcbVab

e�iczþ Vabeic a2

z

� �
;

hcðzÞ ¼ H0 e�iczþ Vbceic b2

z
þ UcbVabUbceic

1� a2

b2 VcbVab

a2

z

 !
ð41Þ

are the expression of h(z) in Eq. (29) within the regions Sb and Sc, respectively. In Eqs. (39) and (40), the function g(z) can be
expressed with the corresponding function h(z) as

gsðzÞ ¼
Z B

A
h0sðzÞh

0
sðzÞdz s ¼ a; b; c ð42Þ

Before separating (39) and (40) into two parts which are holomorphic in both interior region Sa [ Sb and exterior region Sc,
respectively, the estimation

lim
z!1

xbm
b2

z

 !
¼ lim

z!1
z/0bm

b2

z

 !
þ wbm

b2

z

 !" #
� z/0bmð0Þ þ wbmð0Þ ð43Þ

can be derived from Eq. (36) by replacing c with b. Such an estimation guarantees that xbmðb2
=zÞ � z/0bmð0Þ is holomorphic in

the exterior region Sc. Furthermore, when the applied magnetic induction impinges into the region Sc, the limiting values of
magnetoelastic complex potential functions /0cmðzÞ and w0cmðzÞ at infinity satisfy [11]

/0cmðzÞ ¼ Cþ B2
0

2l0

1
4
� vc

l2
rc

� �
þ O

1
z

� �
;

w0cmðzÞ ¼ C0 � B2
0e�2ic

2l0

1
2
� lrc þ vc

l2
rc

� �
þ O

1
z

� �
for jzj � 1 ð44Þ

where

C ¼ 1
4

r11 þ r12

 �

þ i
2Gx1

1þ j
; C0 ¼ �1

2
r11 � r12

 �

e�2i- ð45Þ
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in which the symbols r11 and r12 are the applied principal mechanical stresses along x1 and x2 directions at infinity and the
symbol

x1 ¼ Imð@D=@zÞ ð46Þ

denotes the rotation at infinity. Since the effect of magnetic loading is dominant in this study, those terms, which is related to
pure mechanical loading, is discarded in the following paragraph, i.e. C = C

0
= 0.

Via the use of analytic continuation across the interface L, the potential functions /bm(z), xbm(z), /cm(z) and xbm(z) can be
solved as shown in the Appendix A. It is noted that the Dundurs parameters [16]

Kab ¼
aab þ bab

1� bab
; Pab ¼

aab � bab

1þ bab
ð47Þ

with

aab ¼
Gaðjb þ 1Þ � Gbðja þ 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ; bab ¼

Gaðjb � 1Þ � Gbðja � 1Þ
Gaðjb þ 1Þ þ Gbðja þ 1Þ ð48Þ

are introduced in this solving process.
Step 2: analytic continuation across the interface L*

In this step, it is assumed that the region Sa is made of material a and the regions Sb and Sc are composed of the same
material b. The complex potential functions /bm(z) and xbm(z), which are holomorphic in the interior region Sa [ Sb as shown
in Eqs. (A6) and (A7), will induce two complex potential functions /am(z) and xam(z) in the interior region Sa and two com-
plex potential function /b0(z) and xb0(z) in the exterior region Sb [ Sc. Using Eq. (29) and replacing c with a in Eqs. (34) and
(35), the continuity conditions of traction and displacement across the material interface L* give rise to

/amðqaÞ þxamðqaÞ þ
Gal0va

ka þ 2Ga
haðqaÞh

0
aðqaÞ �

l0ðlra þ vaÞ
2

gaðqaÞ

¼ /bmðqaÞ þ /b0ðqaÞ þxa
bmðqaÞ þxb0ðqaÞ þ

Gbl0vb

kb þ 2Gb
hbðqaÞh

0
bðqaÞ �

l0ðlrb þ vbÞ
2

gbðqaÞ ð49Þ

1
2Ga

ja/amðqaÞ �xamðqaÞ �
Gal0va

ka þ 2Ga
haðqaÞh

0
aðqaÞ

� �

¼ 1
2Gb

jb/bmðqaÞ þ jb/b0ðqaÞ �xa
bmðqbÞ �xb0ðqaÞ �

Gbl0vb

kb þ 2Gb
hbðqaÞh

0
bðqaÞ

� �
ð50Þ

where qa = aeih and the function ga(z) is defined in Eq. (42). From the definition of x(z) in Eq. (36), we have

xbmðzÞ ¼
b2

z
/0bmðzÞ þ wbmðzÞ ¼

a2

z
/0bmðzÞ þ wbmðzÞ þ

b2 � a2

z
/0bmðzÞ ¼ xa

bmðzÞ þ
b2 � a2

z
/0bmðzÞ ð51Þ

and hence

xa
bmðzÞ ¼ xbmðzÞ þ

a2 � b2

z
/0bmðzÞ ð52Þ

which denotes the function with the circular boundary r = a corresponding to xbm(z) with the circular boundary r = b.
By the use of analytic continuation across the interface L*, the potential functions /bm(z), xbm(z), /cm(z) and xbm(z) are

derived in the Appendix B. It is noted that the complex potential function /b0(z) and xb0(z) have the form

/b0ðzÞ ¼ K
a2

z
; xb0ðzÞ ¼ N1

a2

z
þ N3

a4

z3 z 2 Sb [ Sc ð53Þ

where

K ¼l0H2
0

PabvbGb

kbþ2Gb

H2

H2
0

Pcb

1�Pcb
1�V2

ab
a4

b4�3Vabe2ic a2

b2

a2�b2

b2

 !
þVabe2ic b2�a2

b2

" #(

þPabGbðlrbþvbÞ
H2

H2
0

Vab

GbþjbGc

a2

b2þ
jce2ic

2ðGcþjcGbÞ
� V2

abe2ic

2ð1�PcbÞðGbþjbGcÞ
a4ða2�b2Þ

b6 þ e2ic

2PabðGbþjbGaÞ

" #

þPabð1þPbcÞl2
rcWe2ic�PabGbðlrcþvcÞ

jce2ic

2ðGcþjcGbÞ
þ 1
ðGbþjbGcÞ

VbcþUcbVab
H
H0

a2

b2

� ��

� e�2ic

2ð1�PcbÞðGbþjbGcÞ
VbcþUcbVab

H
H0

a2

b2

� �2 a2�b2

b2

#
þPabð1þPbcÞvcGc

kcþ2Gc
VbcþUcbVab

H
H0

a2

b2

� �
�ðlraþvaÞU

2
abGbe2ic

2ðGbþjbGaÞ
H2

H2
0

)

ð54Þ
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and

N1 ¼ l0H2
0

vaGaU2
ab

ka þ 2Ga
1þPba þ

Pba

1�Pba

Gb

Ga þjaGb

� �
� vbGb

kb þ 2Gb
ð1� V2

abÞ
"(

þ ðlrb þ vbÞVab
jaGb

Ga þjaGb
� 1

1�Pba

Ga

Ga þjaGb
þ 1

1�Pcb

Gb

Gb þjbGc

a2

b2

� �#
H2

H2
0

þKabð1þKbcÞl2
rcT

þ 1
1�Pcb

vbGbPcb

kb þ 2Gb

H
H0

1� V2
ab

a4

b4

� �
� Gbðlrc þ vcÞ

Gb þjbGc
Vbc þUcbVab

H
H0

a2

b2

� �
Kab �

a2 � b2

a2 þ 1þKab

1�Pba

Gb

Ga þjaGb

 !" #)

ð55Þ

N3 ¼ l0H2
0

vb

kb þ 2Gb
�KabPcbvb

kb þ 2Gb

a4

b4

� �
� lrb þ vb

6
ja

Ga þ jaGb
þ Kab

Gb þ jbGc

a6

b6

� �
Vab

� �
H2

H2
0

GbVabe2ic

(

þKabGbðlrc þ vcÞe�2ic

6ðGb þ jbGcÞ
Vbc þ UcbVab

H
H0

a2

b2

� �2 a2

b2

)
ð56Þ

Step 3: analytic continuation across the interface L
Just like that applied in step 1, the regions Sa and Sb are regarded as the same material b and the region Sc is made of mate-

rial c. Therefore, both complex potential functions /b0(z) and xb0(z), which are holomorphic in the exterior region Sb [ Sc as
presented in Eq. (53), will cause two complex potential functions /1(z) and x1(z) in the interior region Sa [ Sb and two com-
plex potential functions /c0(z) and xc0(z) in the exterior region Sc. Thus one can employ the continuity conditions of mag-
netoelastic fields across the interface L to find

/b0ðqbÞ þxb
b0ðqbÞ þ /1ðqbÞ þx1ðqbÞ ¼ /c0ðqbÞ þxc0ðqbÞ ð57Þ

1
2Gb

jb/b0ðqbÞ �xb
b0ðqbÞ þ jb/1ðqbÞ �x1ðqbÞ

h i
¼ 1

2Gc
jc/c0ðqbÞ �xc0ðqbÞ
h i

ð58Þ

where

xb
b0ðzÞ ¼ xb0ðzÞ þ

b2 � a2

z
/00ðzÞ ð59Þ

is the function with circular boundary r = b corresponding to xb0(z) on the circular boundary of r = a. Such a relation is sim-
ilar to that given in Eq. (52). The application of the analytic continuation on Eqs. (57) and (58) renders

/1ðzÞ þxb
b0

b2

z

 !
�xc0

b2

z

 !
þ C1z ¼ 0 z 2 Sa [ Sb ð60Þ

/c0ðzÞ � /b0ðzÞ �x1
b2

z

 !
þ C1z ¼ 0 z 2 Sc ð61Þ

jb/1ðzÞ �xb
b0

b2

z

� �
2Gb

þ
xc0

b2

z

� �
2Gc

� C1z
2Gb
¼ 0 z 2 Sa [ Sb ð62Þ

jc/c0ðzÞ
2Gc

�
jb/b0ðzÞ �x1

b2

z

� �
2Gb

� C1z
2Gb
¼ 0 z 2 Sc ð63Þ

where

C1 ¼ /01ð0Þ ð64Þ

Via the use of Eqs. (60)–(63), the complex potential functions /1(z), x1(z), /c0(z) and xc0(z) can be expressed with /0(z) and
x0(z) as

/1ðzÞ ¼ Pcb xb0
b2

z

 !
þ b2 � a2

b2 z/0b0
b2

z

 !
þ C1z

" #
z 2 Sa [ Sb ð65Þ

x1ðzÞ ¼ Kcb/b0
b2

z

 !
þ C1

b2

z
z 2 Sa [ Sb ð66Þ

/c0ðzÞ ¼ ð1þKcbÞ/b0ðzÞ z 2 Sc ð67Þ

xc0ðzÞ ¼ ð1þPcbÞ xb0ðzÞ þ
b2 � a2

z
/0b0ðzÞ þ C1

b2

z

" #
z 2 Sc ð68Þ

536 C.-B. Lin et al. / International Journal of Engineering Science 48 (2010) 529–549



Author's personal copy

and

C1 ¼
Pcb

1�P2
cb

a2

b2 ðN1 þPcbN1Þ ¼
Pcb

1�Pcb

a2

b2 N1 ð69Þ

which can be found by substituting Eqs. (53) into (65) and using Eq. (64). The fact that N1 is real can be observed from Eq.
(55) and be applied in the derivation of Eq. (69).

Step 4: analytic continuation across the interface L*

Similar to that assumed in step 2, the region Sa is composed of material a and the regions Sb and Sc are consisted of the
same material b. Thus the complex potential functions /1(z) and x1(z) in Eqs. (65) and (66) within the interior region Sa [ Sb

will induce two complex potential functions /a1(z) and xa1(z) in the interior region Sa and two complex potential functions
/b1(z) and xb1(z) in the exterior region Sb [ Sc. Thus the continuity conditions of traction and displacement across the inter-
face L* yield

/a1ðqaÞ þxa1ðqaÞ ¼ /1ðqaÞ þxa
1ðqaÞ þ /b1ðqaÞ þxb1ðqaÞ ð70Þ

1
2Ga

ja/a1ðqaÞ �xa1ðqaÞ
h i

¼ 1
2Gb

jb/1ðqaÞ �xa
1ðqaÞ þ jb/b1ðqaÞ �xb1ðqaÞ

h i
ð71Þ

where

xa
1ðzÞ ¼ x1ðzÞ þ

a2 � b2

z
/01ðzÞ ð72Þ

The meaning of superscript a in xa
1ðzÞ is identical to that adopted in Eq. (52).

/a1ðzÞ � /1ðzÞ �xb1
a2

z

� �
þ Ca1z� C1z ¼ 0 z 2 Sa ð73Þ

/b1ðzÞ þxa
1

a2

z

� �
�xa1

a2

z

� �
þ Ca1z� C1z ¼ 0 z 2 Sb [ Sc ð74Þ

ja/a1ðzÞ
2Ga

�
jb/1ðzÞ �xb1

a2

z

� �
2Gb

� Ca1z
2Ga
þ C1z

2Gb
¼ 0 z 2 Sa ð75Þ

jb/b1ðzÞ �xa
1

a2

z

� �
2Gb

þ
xa1

a2

z

� �
2Ga

� Ca1z
2Ga
þ C1z

2Gb
¼ 0 z 2 Sb [ Sc ð76Þ

where

Ca1 ¼ /0a1ð0Þ ð77Þ

As referring to the estimation in Eq. (43), the appearance of C1 and Ca1 in Eqs. (73)–(76) can assure that the terms
xa

1ða2=zÞ � C1z and xa1ða2=zÞ � Ca1z are holomorphic in the exterior region Sb [ Sc.
By the use of Eqs. (73)–(76), the complex potential functions /a1(z), xa1(z), /b1(z) and xb1(z) can be expressed with /1(z)

and x1(z) as

/a1ðzÞ ¼ ð1þKabÞ/1ðzÞ þPbaCa1z z 2 Sa ð78Þ

xa1ðzÞ ¼ ð1þPabÞ x1ðzÞ þ
a2 � b2

z
/01ðzÞ � C1

a2

z

" #
þ Ca1

a2

z
z 2 Sa ð79Þ

/b1ðzÞ ¼ Pab x1
a2

z

� �
þ a2 � b2

a2 z/01
a2

z

� �
� C1z

" #
z 2 Sb [ Sc ð80Þ

xb1ðzÞ ¼ Kab/1
a2

z

� �
þ ð1þPbaÞCa1

a2

z
� C1

a2

z
z 2 Sb [ Sc ð81Þ

and

Ca1 ¼
1þKab

1�Pba
C1 ¼

1þKab

1�Pba

Pcb

1�Pcb

a2

b2 N1 ð82Þ

Based upon the alternating technique, one can apply the analytic continuation across two interfaces L and L* repeatedly
just like that in steps 3 and 4 to find the additional terms /c1(z), xc1(z) and /n(z), xn(z), /an(z), xan(z), /bn(z), xbn(z), /cn(z),
xcn(z)(n = 2,3,4, . . .). Thus the magnetoelastic potential functions /(z) and x(z) can be represented as
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/ðzÞ ¼

/amðzÞ þ
P1
n¼1

/anðzÞ z 2 Sa

/bmðzÞ þ
P1
n¼1

/nðzÞ þ
P1
n¼0

/bnðzÞ z 2 Sb

/cmðzÞ þ
P1
n¼0

/cnðzÞ z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð83Þ

xðzÞ ¼

xamðzÞ þ
P1
n¼1

xanðzÞ z 2 Sa

xbmðzÞ þ
P1
n¼1

xnðzÞ þ
P1
n¼0

xbnðzÞ z 2 Sb

xcmðzÞ þ
P1
n¼0

xcnðzÞ z 2 Sc

8>>>>>>>><
>>>>>>>>:

ð84Þ

Similar to that given in Eqs. (65) and (66), the complex potential functions /n+1(z) and xn+1(z) satisfy

/nþ1ðzÞ ¼ Pcb xbn
b2

z

 !
þ b2 � a2

b2 z/0bn
b2

z

 !
þ Cnþ1z

" #
z 2 Sa [ Sb ð85Þ

xnþ1ðzÞ ¼ Kcb/bn
b2

z

 !
þ Cnþ1

b2

z
z 2 Sa [ Sb ð86Þ

for n P 1. The corresponding potential functions /bn(z) and xbn(z) can be found as

/bnðzÞ ¼ Pab xn
a2

z

� �
þ a2 � b2

a2 z/0n
a2

z

� �
� Cnz

" #
z 2 Sb [ Sc ð87Þ

xbnðzÞ ¼ Kab/n
a2

z

� �
þ ð1þPbaÞCan � Cn

h i a2

z
z 2 Sb [ Sc ð88Þ

which is like that presented in Eqs. (80) and (81). The substitution of Eqs. (86) and (88) into (85) and (87) yields the recur-
rence formula of /n+1(z) and /bn(z) for n P 1 as

/nþ1ðzÞ ¼ Pcb Kab/n
a2

b2 z
� �

þ ½ð1þPbaÞCan � Cn�
a2

b2 zþ b2 � a2

b2 z/0bn
b2

z

 !
þ Cnþ1z

( )
ð89Þ

/bnðzÞ ¼ Pab Kcb/bðn�1Þ
b2

a2 z

 !
þ Cn

b2

a2 � 1

 !
zþ a2 � b2

a2 z/0n
a2

z

� �" #
ð90Þ

The comparison between Eqs. (85)–(88) and Eqs. (65), (66), (80) and (81) reveals that two groups of equations possess the
similar form. This means that one can obtain one group of equations from the other group. For example, the replacement of
the subscripts 0 and 1 in Eqs. (65) and (66) with n and n + 1, respectively yields Eqs. (85) and (86). Therefore, the expression
with subscript 1 can be extended to that with n. The result that Cn is real and the relation Can = (1 + Kab)Cn/(1 �Pba) can be
obtained as referring to Eqs. (69) and (82). Applying such results and substituting Eqs. (53) and (64) into (65), the functions
/n+1(z) and /bn(z) in Eqs. (89) and (90) take the form

/nþ1ðzÞ ¼ Cnþ1zþ Enþ1z3; /bnðzÞ ¼
Sn

z
for n P 0 ð91Þ

The corresponding recurrence formula of the coefficients Cn+1, En+1 and Sn can be obtained as

Cnþ1 ¼
2PcbðKab þPbaÞ
ð1�PcbÞð1�PbaÞ

a2

b2 Cn; Enþ1 ¼ Pcb Kab
a6

b6 En �
b2 � a2

b6 Sn

 !
;

Sn ¼ Pab Kcb
a2

b2 Sn�1 þ 3ða2 � b2Þa2En

� �
for n P 1 ð92Þ

It is convenience to introduce the following definitions

R ¼
X1
n¼0

Cnþ1; P ¼
X1
n¼0

Enþ1; Q ¼
X1
n¼0

Sn ð93Þ
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Hence taking
P1

n¼1 for Eq. (92) and using Eq. (69) give rise to

R ¼
X1
n¼0

Cnþ1 ¼
Pcb

1�Pcb

a2

b2 N1

1� 2PcbðKabþPbaÞ
ð1�PcbÞð1�PbaÞ

a2

b2

ð94Þ

P � E1 ¼ Pcb Kab
a6

b6 P � b2 � a2

b6 ðQ � S0Þ
" #

ð95Þ

Q � S0 ¼ Pab Kcb
a2

b2 Q þ 3ða2 � b2Þa2P
� �

ð96Þ

where S0 = Ka2 can be obtained from Eqs. (53) and (91) and E1 ¼ Pcb N3a4=b6 � Kðb2 � a2Þa2=b6
h i

can be found from Eqs. (53),
(65) and (91). In order to provide the convergence condition of (110), it is convenient to use ja = jb = 1.8 (with ma = mb = 0.3)
for the typical materials. Via the use of Eqs. (47) and (48) together with a < b, one can estimate the ratio in Eq. (92)

2PcbðKab þPbaÞ
ð1�PcbÞð1�PbaÞ

a2

b2 ¼
2ðGc � GbÞ½ðjb � 1ÞGa � ðja � 1ÞGb�
½ðjb � 1ÞGc þ 2Gb�½ðja � 1ÞGb þ 2Ga�

a2

b2 ¼
10ðGc � GbÞðGa � GbÞ
ð2Gc þ 5GbÞð2Gb þ 5GaÞ

a2

b2

<
10ðGc � GbÞðGa � GbÞ

10GcGa

a2

b2 < 1 ð97Þ

which can assure the convergence of the series in Eq. (94). Similarly, the following estimations

Pab ¼
Ga � Gb

Gajb þ Gb
<

Ga

Gajb
< 1;

PabKcb
a2

b2 ¼
Ga � Gb

Gajb þ Gb

Gcjb � Gbjc

Gbjc þ Gc

a2

b2 <
Ga

Gajb

Gcjb

Gc

a2

b2 < 1 ð98Þ

and Pcb, PcbKaba2/b2 < 1 can be also found from Eq. (47) and (48) with a < b. Thus the series P and Q in Eq. (93) are convergent
and can be solved from Eqs. (95) and (96) as

P ¼
1�PabKcb

a2

b2

� �
N3 þ a2�b2

a2 K
h i

Pcb
a4

b6

1�PabKcb
a2

b2

� �
1�PcbKab

a6

b6

� �
� 3PabPcb

ða2�b2Þ2a2

b6

;

Q ¼
3PabPcb

a6

b6
a2�b2

a2 N3 þ 1�PcbKab
a6

b6

� �
K

h i
a2

1�PabKcb
a2

b2

� �
1�PcbKab

a6

b6

� �
� 3PabPcb

ða2�b2Þ2a2

b6

ð99Þ

The summation of the complex potential functions /n(z) and /bn(z) can be obtained from Eqs. (91), (93), (94), and (99) as

X1
n¼1

/nðzÞ ¼
X1
n¼0

ðCnþ1zþ Enþ1z3Þ ¼ Rzþ Pz3 ¼
Pcb

1�Pcb

a2

b2 N1z

1� 2PcbðKabþPbaÞ
ð1�PcbÞð1�PbaÞ

a2

b2

þ
1�PabKcb

a2

b2

� �
N3 þ a2�b2

a2 K
h i

Pcb
a6

b6

1�PabKcb
a2

b2

� �
1�PcbKab

a6

b6

� �
� 3PabPcb

ða2�b2Þ2a2

b6

z3

a2 ð100Þ

X1
n¼0

/bnðzÞ ¼
X1
n¼0

Sn

z
¼ Q

z
¼

3PabPcb
a6

b6
a2�b2

a2 N3 þ 1�PcbKab
a6

b6

� �
K

1�PabKcb
a2

b2

� �
1�PcbKab

a6

b6

� �
� 3PabPcb

ða2�b2Þ2a2

b6

a2

z
ð101Þ

The solutions for the summation of the corresponding complex potential functions
P1

n¼1xnðzÞ;
P1

n¼0xbnðzÞ;
P1

n¼1/anðzÞ;P1
n¼1xanðzÞ;

P1
n¼1/cnðzÞ and

P1
n¼1xcnðzÞ are provided in the Appendix C. Putting Eqs. (A5)–(A8), (A14), (A15) and Eqs.

(98)–(101) into Eqs. (83) and (84), the solving process in finding the complex potential functions /(z) and x(z) is completed.
Therefore, the magnetoelastic stresses then can be derived from Eqs. (32) and (33).

4. Special cases

4.1. Ferromagnetic thin shell

For the special case that a ferromagnetic cylindrical thin shell subjected to a uniform magnetic induction, the regions Sa

and Sc become air and Sb is a ferromagnetic medium with t/a, t/b� 1. Where t(=b � a) is the thickness of the thin shell. Thus
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lra = lrc = 1 and lrb� 1 can be taken. Substituting such data into Eqs. (12) and (20) yields Uab = Ucb � 2, Vab = Vcb � 1 and
Uba = Ubc � 2/lrb� 1, Vba = Vbc � �1. It is convenient to introduce R = (a + b)/2 � a, b as the mean radius of the thin shell.
The estimation H/H0 � (2/lrb)/(1 � a2/b2) � (2/lrb)/(2Rt/b2) � R/(lrbt)� 1 is adopted in the following derivation as that sug-
gested by Lin and Chen [12]. Furthermore, one can find Ga = Gc = 0 for the air medium in Sa and Sc and obtain
Pab = Pcb = Kab = Kcb = �1 via Eqs. (47) and (48). Notice that those terms T and W in Eq. (A5) are induced by the jump of mag-
netic properties across the interface when the applied magnetic induction comes from the air at infinity to the outer region
Sc. Thus both terms disappear for the present case that the outer region Sc is composed of air. Applying the above estimations
and vc = lrc � 1 = 0 on Eqs. (A6), (54)–(56) and discarding those terms with order 1/lrb and t/R, one can obtain

/bmðzÞ �
l0H2

0z
2
� l0H2

0e2ic

6
z3

a2 ; K � e2ic

2
� 1

� �
l0H2

0; N1 � �
l0H2

0

2
; N3 �

l0H2
0e�2ic

6
ð102Þ

Since the cylindrical shell is axis symmetric, it is convenient to assume that the applied magnetic field propagates along x-
axis, i.e. c = 0. Substituting Eq. (102) into Eqs. (100) and (101) with the above estimations yields

X1
n¼1

/nðzÞ ¼
� 1

2
a2

b2 N1z

1� a2

b2

þ
1� a2

b2

� �
N3 þ a2�b2

a2 K
h i

Pcb
a6

b6

1� a2

b2

� �
1� a6

b6

� �
� 3 ða

2�b2Þ2a2

b6

z3

a2

�
l0H2

0
4

a2

b2 z

1� a2

b2

þ
1� a2

b2

� �
l0H2

0
6 � a2

b2 � 1
� �

b2

a2
l0H2

0
2

h i
Pcb

a6

b6

1� a2

b2

� �4

z3

a2

� l0H2
0

a2z
8Rt
� a4z3

12R3t3

� �
;

X1
n¼0

/bnðzÞ ¼
3 a6

b6
a2�b2

a2 N3 þ 1� a6

b6

� �
K

1� a2

b2

� �
1� a6

b6

� �
� 3 ða

2�b2Þ2a2

b6

a2

z

�
�3 a4

b4 1� a2

b2

� �
l0H2

0
6 � 1� a2

b2

� �
1þ a2

b2 þ a4

b4

� �
l0H2

0
2

1� a2

b2

� �4
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Using Eqs. (29), (83), (102) and (103) with Ubc � 2/lrb� 1, H0 = B0/l0, a = R � t/2 and b = R + t/2, the tangential stress on the
outer surface of the cylindrical thin shell can be found as

thh � 2 /0ðzÞ þ /0ðzÞ
h i

� kl0v
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which is in accordance with that provided by Lin and Chen [12]. Notice that the radial stress trr is much small than thh on the
surface of cylindrical shell.

4.2. Ferromagnetic medium with a circular hole

In the present case, the regions Sa and Sb are air and Sc is made of a ferromagnetic material. Thus lra = lrb = 1 and lrc� 1
can be applied. The substitution of such data into Eqs. (12) and (20) yields Uab = Uba = 1, Vab = Vba = 0, Ubc � 2, Ucb � 2/lrc� 1,
Vbc � 1 and Vcb � �1. Thereafter, the ratio H/H0 � 2 can be found. Furthermore, Ga = Gb = 0 can be taken for the air medium in
Sa and Sb. And hence Eqs. (47) and (48) will result in Pab = Pba = Kab = Kba = 0 and Pbc = Kbc = �1. Putting the above estima-
tions into Eqs. (54)–(56), (A8) and (A9), taking lrc� 1 for the ferromagnetic material on Sc and neglecting those terms which
are much smaller than the dominant terms render

/cmðzÞ � l0l
2
rcH2

0 Tz�We2ic b2

z

 !
; xcmðzÞ ¼ l0l

2
rcH2

0 We�2icz� T
b2
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 !
;

K;N1;N3 � l0lrcH2
0 ð105Þ

Applying Eqs. (28), (83), (103), (A19) and (A20), the magnetoelastic potential functions /(z) and x(z) on Sc can be obtained as

/ðzÞ � B2
0
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Tz�We2ic b2

z

 !
; xðzÞ ¼ B2

0
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We�2icz� T
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z

 !
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The corresponding w(z) can be derived by the use of Eqs. (36), (84), (105), (106) and (A7) with the replacement of c by b in Eq.
(36). It gives

wðzÞ ¼ xðzÞ � b2

z
/0ðzÞ ¼ B2

0

l0
We�2icz� T

b2

z

 !
� b2

z
B2

0

l0
T þW

b2

z2

 !

¼ B2
0

l0
We�2icz� T

b2

z

 !
� b2

z2 TzþW
b2

z

 !" #
z 2 Sc ð107Þ

This result is identical to that given by Lin [11] with a = b and C = C
0
= 0 in Eqs. (4), (47), (48) and (71) of that paper.

5. Numerical results and discussion

The numerical results of this work are displayed with figures in this section to illustrate the influence of relevant param-
eters on the magnetoelastic stress fields. It is assumed that lrb/lra = lrb/lrc, Gb/Ga = Gb/Gc and ma = mb = mc = 0.3 in the follow-
ing paragraph. Furthermore, the magnetic induction progresses along x-axis (i.e. c = 0) and the magnetoelastic stresses are
expressed in a dimensionless form as divided with B2

0=2l0. Notice that the typical magnetic induction B0 = 1 T (tesla) will

induce the magnetic stress B2
0=2l0 ¼ 58 psi (0.4 MPa). The variations of the dimensionless radial magnetoelastic stress

trr= B2
0=2l0

� �
and the dimensionless tangential magnetoelastic stress thh= B2

0=2l0

� �
at point A are depicted in Fig. 2. The ab-

scissa axis is presented with log10 scale and the values of relative magnetic permeability lra and lrc are assumed to be 1 in
this figure. Notice that the value of relative magnetic permeability for a ferromagnetic material, a paramagnetic material and
a diamagnetic material is much greater than 1, slightly greater than 1 and slightly less than 1, respectively. Therefore, the
extent of the ratio lrb/lra(=lrb/lrc) in Fig. 2 is taken to be higher that 1 from practical point of view. As shown in Fig. 1,

the point A is located on the surface of region Sb with h = 0. Thus the radial magnetoelastic stress trr= B2
0=2l0

� �
is this figure
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Fig. 2. The variations of dimensionless magnetoelastic stresses at point A with respect to the ratio of magnetic susceptibility lrb/lra under lra = lrc = 1,
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can be regarded as the interfacial normal stress between the regions Sb and Sc. Since the point A falls on the x-axis which is

the symmetric line of the region Sb for the present case with c = 0, the interfacial shear stress trh= B2
0=2l0

� �
at point A equals

zero. It is observed from Fig. 2 that higher Gb/Ga(=Gb/Gc) ratio will cause lower values of the magnetoelastic stresses

trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
when the ratio Gb/Ga(=Gb/Gc) < 0.1. Once the ratio Gb/Ga(=Gb/Gc) > 1, higher Gb/Ga(=Gb/Gc) ratio

may induce higher values of the magnetoelastic stresses trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
. In the intermediate region 1 > Gb/

Ga(=Gb/Gc) > 0.1, the variation of the magnetoelastic stresses are not significant. The above observation denotes that the dif-
ference of the magnetic property G between the region Sa (or Sc) and the region Sb may cause higher value of the radial and
the tangential magnetoelastic stresses. Furthermore, when the ratio lrb/lra(=lrb/lrc) moves from 1 to a higher value, the
magnetoelastic stresses also increase. This means that the difference of the magnetic property lr between the region Sa(or
Sc) and the region Sb may evoke the rising of the radial and the tangential magnetoelastic stresses. From Fig. 2a, the value of

the dimensionless radial magnetoelastic stress trr= B2
0=2l0

� �
with lrb/lra(=lrb/lrc) = 50 and Gb/Ga (or Gb/Gc) = 0.02 is found to

be 2000. From the above estimation of B2
0=2l0 ¼ 0:4 MPa under the applied magnetic induction B0 = 1 T, this value corre-

sponds to 800 MPa of real radial stress at point A. For practical application, such a stress level is considerable for stainless
steel (AISI 302) with tensile strength of 860 MPa. On the other hand, the dimensionless tangential magnetoelastic stress

thh= B2
0=2l0

� �
with lrb/lra(=lrb/lrc) = 100 and Gb/Ga (or Gb/Gc) = 50 equals 288. Such a value is corresponding to 860 MPa

of real tangential stress at point A under the applied magnetic induction B0 = 2.73 T. Thus the tangential stress at point A
is over the tensile strength of stainless steel once the strength of applied magnetic induction B0 is greater than 2.73 T. This
is the critical value of the applied magnetic induction for the present condition with Sb made of stainless steel. Inside a toroi-
dal magnetic fusion reactor, there is a large magnetic induction (>5 T). From the point of view for practical application, the
magnetoelastic stresses inside the intermediate region Sb of a three-phase composite cylinder become dominant when the
ratios lrb/lra (or lrb/lrc) and Gb/Ga (or Gb/Gc) increase over a certain value. Thus the failure analysis and prevention of the
composite structure with higher lrb/lra (or lrb/lrc) and Gb/Ga (or Gb/Gc) ratios need to be considered, especially for a struc-
ture under an environment with strong magnetic induction.
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Fig. 3 displays the variations of the dimensionless magnetoelastic stresses trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
at point A with

respect to the ratio Gb/Ga(=Gb/Ga) under b/a = 1.01 and various lrb/lra(=lrb/lrc) values. The abscissa axis in Fig. 3 is also de-

picted with log10 scale as that adopted in Fig. 2. From Fig. 3, the feature that the magnetoelastic stress trr= B2
0=2l0

� �
increases

with the increase of lrb/lra(=lrb/lrc) can be found. Except for the curve with lrb/lra(=lrb/lrc) = 1, which leads to very small

trr= B2
0=2l0

� �
, the other curves in Fig. 3a reveal that the magnetoelastic stress trr= B2

0=2l0

� �
increases with the ratio

Gb/Ga(=Gb/Gc) when this ratio is less then 1. Once the ratio Gb/Ga(=Gb/Gc) is greater than 1, the variation of the magnetoelastic

stress trr= B2
0=2l0

� �
on this ratio becomes insignificant. The curve in Fig. 3b with lrb/lra(=lrb/lrc) = 1 also has very small

thh= B2
0=2l0

� �
and the magnetoelastic stress thh=ðB2

0=2l0Þ of the other curves decrease with the increase of ratio Gb/Ga(=Gb/

Gc) for Gb/Ga < 0.1 and increase with the ratio Gb/Ga for further increase of this ratio. It is interpreted that the materials in
Sa and Sc with higher stiffness than that in Sb may provide stronger restriction on the deformation of annular region Sb

and may cause higher interfacial radial stress and tangential stress. On the other hand, the material in Sb can extend and
induce higher tangential stress while its stiffness becomes much higher than that in Sa and Sc. With lrb/lra(=lrb/lrc) = 50

and Gb/Ga (or Gb/Gc) = 0.01, the dimensionless magnetoelastic stresses trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
are found to be

3600 and 160, respectively. Such results lead to the real magnetoelastic stress trr = 12,960 MPa with B0 = 1 T and
thh = 860 MPa with B0 = 3.665 T. Such values of magnetoelastic stresses are considerable in the practical application as men-
tioned above. The value of 860 MPa equals the tensile strength of stainless steel (AISI 302). Therefore, the value 3.665 T of B0

can be viewed as the critical value for the present condition with Sb made of stainless steel.
The variations of the dimensionless magnetoelastic stresses trr= B2

0=2l0

� �
and thh= B2

0=2l0

� �
at point A on the relative mag-

netic permeability lrc(=lra) with b/a = 1.01 under various lrb/lra(=lrb/lrc) and Gb/Ga(=Gb/Gc) ratios are presented in Fig. 4.
One can find that both the magnetoelastic stresses decrease with the increase of lrc. Furthermore, the magnetoelastic stres-
ses also increase with the ratio lrb/lra under a fixed value of Gb/Ga and decrease with the increase of ratio Gb/Ga(<1) under a
fixed value of lrb/lra. This results are consistent with Figs. 2 and 3 that the difference of material properties lr and G in Sa
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(or Sc) and Sb may evoke the raise of the magnetoelastic stress on the interface. Fig. 5 depicts the variation of the dimension-

less magnetoelastic stresses trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
at point A with respect to the radius ratio b/a under various lrb/

lra(=lrb/lrc) and Gb/Ga(=Gb/Gc) ratios. It is observed that both the magnetoelastic stresses decrease with the increase of b/a
ratio. This means that thicker intermediate region Sb under a fixed radius a will reduce the magnetoelastic stresses at point A
on the interface. In analogy to Fig. 4, the magnetoelastic stresses increase with the ratio lrb/lra under a fixed value of Gb/Ga

and decrease with the increase of ratio Gb/Ga(<1) under a fixed value of lrb/lra can be also found from Fig. 5. The estimation
of the real magnetoelastic stresses corresponding to the dimensionless stresses in Figs. 4 and 5 are similar to that provided in
the previous paragraph for Fig. 3.

The variations of the dimensionless magnetoelastic stresses trr= B2
0=2l0

� �
; thh= B2

0=2l0

� �
and trh= B2

0=2l0

� �
with respect to

the circumference angle h under lra = lrc = 1, b/a = 1.01 and various lrb/lra(=lrb/lrc) and Gb/Ga(=Gb/Gc) ratios are depicted in
Fig. 6. It is found from this figure that the curves possess period p(or 180�). This result can be interpreted as that the expres-
sions of /(z) and x(z) on Sb in Eqs. (83) and (84) with Eqs. (100), (101), (A17) and (A18) have dominant terms of z3, z and z�1

for the present case. The derivatives of such terms become z2, z0 and z�2, respectively and hence the magnetoelastic stresses

in Eqs. (32) and (37) have period p. The values of the magnetoelastic stresses trr= B2
0=2l0

� �
and thh= B2

0=2l0

� �
in Fig. 6 increase

with the ratio lrb/lra under a fixed value of Gb/Ga and decrease with the increase of ratio Gb/Ga(<1) under a fixed value of lrb/lra

in accordance with Fig. 5. Furthermore, the values of magnetoelastic stress trh= B2
0=2l0

� �
at h = 0 equal zero in this figure. Such a

result guarantees that trh= B2
0=2l0

� �
at point A vanishes as mentioned above. The estimation of the real magnetoelastic stresses

corresponding to the dimensionless stresses in Fig. 6 are also similar to that provided in the previous paragraph for Fig. 3.
From the estimation of the real magnetoelastic stresses in the illustrated case of Figs. 2–6, it is concluded that the applied

uniform magnetic induction may evoke significant magnetoelastic stresses on a three-phase composite cylinder with higher
values of the Gb/Ga(=Gb/Gc), lrb/lra(=lrb/lrc) ratios and lower values of the lra(=lrc), b/a ratio. Here the higher values of the
Gb/Ga(=Gb/Gc) and lrb/lra(=lrb/lrc) ratios denote the deviation of the material properties between different phases becomes
larger. By comparing the stresses of this study with the tensile strength of real material, such as stainless steel, the critical
value of the applied magnetic induction can be obtained. From the practical point of view, such estimations that reveal the
effect of various parameters on the real magnetoelastic stresses are necessary.
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6. Conclusions

By applying the alternating technique and the method of analytical continuation on the complex form of magnetoelas-
ticity, the magnetic and the magnetoelastic fields on a three-phase composite cylinder subjected to a remote uniform mag-
netic induction are derived in this paper. It is noted that the boundary conditions at both interfaces between three phases
can be satisfied subsequently. Thus the solutions of complex potential functions can be expressed in a series form. With the
typical data of material properties, the series solutions are found to be convergent and then tend to the exact solutions. The
numerical illustrations of magnetoelastic stresses at outer face of intermediate phase are shown with figures to present the
effects of various parameters. Furthermore, the estimations of real magnetoelastic stresses corresponding to the dimension-
less results in the illustrated figures are provided and compared with the strength of real material data to make the present
study meaningful in practical application. By comparing the results of this study with the literature under special cases, such
as cylindrical shell in vacuum and an infinite matrix with a circular hole, the correctness of this work can be guaranteed.
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Appendix A. The solving process of /bm(z), xbm(z), /cm(z) and xbm(z)

By applying analytic continuation across the interface L, it is found from Eqs. (39) and (40) that
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where

Cbm ¼ /0bmð0Þ;H ¼
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The symbol H, which is introduced for the sake of convenience, can make the expression in the derivation process more com-
pact. Solving Eqs. (A1)–(A4), one can obtain
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Appendix B. The solving process of /am(z), xam(z), /b0(z) and xb0(z)

Applying the analytic continuation on Eqs. (49) and (50) and using Eqs. (47), (48), (A6) and (A7) yield
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where

Cam ¼ /0amð0Þ ðA14Þ

It is found from Eq. (47) that T and W are real. By the use of this feature and Eqs. (A6) and (A7), four complex functions /am(z),
xam(z), /b0(z) and xb0(z) can be solved from Eqs. (A10)–(A13) as
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Notice that the solutions of the complex potential functions /b0(z) and xb0(z) are shown in Eqs. (53)–(56).

Appendix C. The solving process of +
‘
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Adding all the terms with different n in Eq. (86) and using Eqs. (94) and (101) yield
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The general expression of the complex potential functions /sn(z) and xsn(z) with s = a, b, c can be found by replacing the sub-
script 0 in Eqs. (67), (68) and 1 in Eqs. (78)–(81) with n. Applying these equations gives rise to
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Notice that the real feature of Cn and the relation Can = (1 + Kab)Cn/(1 � Pba) are used in the derivation of Eqs. (A19) and
(A20).
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