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1. Introduction

In the past few decades, the use of composite materials in engineering application increases rapidly. Therefore, the stress
analysis of layered media has been investigated by earlier researchers. Due to the necessity in considering the boundary con-
ditions on each of the multiple interfaces for such a problem, the solving process becomes more complicated as comparing
with the homogeneous counterpart. Thus the stress analysis of multi-layered media problem results in finding the solution
for a system of simultaneous equations with a lot of unknown constants as derived by Iyengar and Alwar [1] and Chen [2].
Nevertheless, several methods have been developed to provide an efficient approach in studying the elastic problem of mul-
ti-layered media. Such as Bulfer [3] used the method of transfer matrix which is expressed in terms of the infinite series
expansion and can be solved with various orders of approximation, Lin and Keer [4] applied the flexibility matrix approach
with the boundary integral formulation to solve the elastic problem of a vertical crack in a multi-layered medium. Based
upon the alternating technique, Choi and Earmme [5] conducted the stress analysis of the singularity problem in an isotropic
plane layered trimaterial. Comparing with the aforementioned studies of straight interfaces, the corresponding problem of
circular interfaces may involve more mathematical complexity. Several investigators considered the elastic problem of a
three-phase cylinder. As denoted by Benveniste et al. [6], a three-phase circular boundary problem with perfect interfaces
can be transformed into a corresponding two-phase problem with imperfect interface by letting the thickness of intermedi-
ate phase tends to zero. Luo [7] employed the Laurent series expansion and the method of analytical continuation to find a
solution for the elastic problem of three-phase composite cylinder with an edge dislocation at the intermediate annular re-
gion. By the use of heterogenization technique, Honein et al. [8] considered the anti-plane elastostatics of circularly cylin-
drical and plane layered media. Chao et al. [9] used the alternating technique with analytic continuation to obtain the
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stress evoked by a point force. To the authors’ knowledge, the magnetoelastic problem of a three-phase cylinder is still a new
topic and cannot be found in the literature.

Due to the possible application of a structure in a magnetic environment, the interaction between the magnetic field and
the deformation of the structure is a relevant concern. Especially in an environment of strong magnetic field, such as mag-
netic fusion reactor and magnetic levitated vehicles, the analysis of magnetoelastic interaction is necessary in considering
the safety of structure. Just like that in the pure elastic case, the application of composite material is also competent in
the magnetoelastic one. For the problem associated with inhomogeneities in magnetoelasticity, Maugin et al. [10] presented
a theoretic formulation of nonlinear anisotropic inhomogeneous electromagnetoelasticity. Lin [11] used the technique of
conformal mapping and the method of analytical continuation to find the magnetic and the magnetoelastic fields on both
the matrix and a perfectly bonded elliptic inclusion. Based upon the complex variable theory and the method of analytical
continuation, Lin and Chen [12] found the magnetoelastic stresses on a circular shell subjected to a point magnetic source or
a remote uniform magnetic induction. By applying the Laurent series expansion and expanding the definition of Airy’s stress
function to magnetoelasticity, Chen and Lin [13] obtained the magnetoelastic fields for an infinite matrix with multiple cir-
cular inclusions.

In this study, we applied the formulation of magnetoelasticity in complex variable form and the alternating technique to
derive the magnetic field and the magnetoelastic field in a three-phase composite cylinder under a remote uniform magnetic
induction. The distributions of magnetoelastic stress are displayed graphically and the results of this study are compared
with the previous studies under special cases.

2. Magnetic field

The magnetic induction can be expressed in terms of a complex potential function as

B +iBy = popt(Hx + iHy) = ptopt.h'(2) (1)

where B; and H, denote magnetic induction (or magnetic flux density) and magnetic intensity; po = 47x10~7 newton/am-
pere? is a universal constant and g, is relative magnetic permeability. The complex potential function h(z) of magnetic field
is an analytic function in terms of the complex variable z = x + iy and can be represented as

hz) = p(x.y) +iy(x.y) (2)

where ¢(x, y) and y(x, y) denote the real and the imaginary parts of h(z). With the integration along the boundary of a body,

_ 4 90 _
/(dex+Hydy) = / < ax + —- 2y ) =0,
d dx
/(anx+Byny)ds: / ( JS/ By ds) ds = /Noﬂr( dy + de> = Moty 3)

the boundary conditions can be described as the continuation of ¢ and popy across the interface. Consider a composite cyl-
inder with three dissimilar isotropic ferromagnetic materials bonded along two concentric interfaces L and L", under a uni-
form magnetic induction as shown in Fig. 1. Three different materials a, b and c occupy the concentric regions S,, S, and S,
respectively. The magnetic fields on the trimaterial cylinder under a uniform magnetic induction can be found by applying
the alternating technique.

Step 1: analytic continuation across the interface L

In the first step, the regions S, and S, are regarded to be composed of the same material b and the region S. is consisted of
material c. The magnetic potential function can be represented as

@) = {7 2L @
0(z2) + ho(z) z€S:

where the subscript 1b in hq,(z) denotes the first time to consider the continuity conditions across the interface L(i.e. r = b).
The symbol ho(z) represents the complex potential function of the applied uniform magnetic induction, h;(z) is holomorphic
in the interior region S, U S, and h(z) is holomorphic in the exterior region S.. Notice that the complex potential function
ho(z) = (Bo/ ofirc)e 7z of the applied magnetic induction is holomorphic in an interior region containing the origin. As shown
in Fig. 1, the applied magnetic induction with strength By is assumed to be conducted along the direction having at an angle y
with respect to x;-axis. Furthermore, the appearance of y,. is due to that a remote uniform magnetic induction is applied into
the exterior region S.. Applying the boundary conditions of magnetic filed across L, one can obtain

hi(py) + h1(py) = ho(py) + ho(py) + heo(ps) + Moo (py) (5)
s [11(05) = B (0p)| = e[ ho(0) = o(py) + heo () — Feo ()] (6)
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Fig. 1. A three-phase cylinder subjected to a remote uniform magnetic induction.

where p, = be'’ with the phase angle 0 shown in Fig. 1. Via the use of analytic continuation, we have

2

hy(z) = ho(2) + heo (%) Z€S,USp (7)

iurbhl (Z) = Hye

— (p?
ho(z) — heo (7)} Z€S,US, (8)

which is holomorphic in the interior region S, U S, and

3 (b;)_ho(b;>+hco<z> zes. ©)
s (%) ~ Hb;) —fw(z)} zes. (10)

is holomorphic in the exterior region S.. It is remarked that the symbol f%o(b2 /z) indicates that the complex conjugate of the
coefficients (rather than argument) in the corresponding function is taken. The complex potential functions h;(z) and hq(z)
can be solved from Eqgs. (7)-(10) as

_ [p?
hi(z) = Upcho(2), heo(z) = Vicho (7> (11)
where
chziy Vo = Hre = Hp (12)
urc + :urb :urc + :urb

Step 2: analytic continuation across the interface L’

In this step, it is assumed that the region S, is made of material a and the regions S, and S, are composed of the same
material b. The complex potential function hy(z), which is holomorphic in the interior region S, U S, as shown in Eq. (4), will
induce a complex potential function h,;(z) holomorphic in the interior region S, and a complex potential function hy;(z) holo-
morphic in the exterior region S, U S.. Thus the boundary conditions of magnetic fields yield

ha1(pg) + har(pg) = hi(pg) +hi(pe) + hp1(04) + hpi(p,) (13)

Hra [ a1 (90) = Rar (p)] = s [P (02) = B (P) + ht (P4) — i () (14)
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where p, = ae'’. By the use of analytic continuation, one can obtain

ha1(2) = hy(2) + hyy (";) zeS$, (15)

Uoha1 (2) = 1y {hﬂz)—ﬁm <a72>} zeS, (16)
and

ha ( ) h< >+h,,1() zeS,US, (17)

el () = a1 (3) o] zesos 8

The complex potential functions h,;(z) and hp(z) can be found from Eqgs. (15)-(18) as

2
har(2) = Uashy (2).  hin (2) = Vashy (" ) (19)
where
Uy — ﬂ7 Vg = B = Hra (20)
:urb + :ura :urb + :ura

Step 3: analytic continuation across the interface L

Just like that in step 1, the regions S, and S, are composed of the same material b and the region S, is consisted of material
c in this step. Thus the complex potential function hy¢(z), which is holomorphic in the exterior region S, U S as shown in Eq.
(17), will cause a complex potential function hy(z) holomorphic in the interior region S, U S, and a complex potential function
hc1(z) holomorphic in the exterior region S.. Similar to the solving process given in step 1, one can apply the boundary con-
ditions of magnetic filed across L to obtain

hy1(Py) + M (p) + h2(pp) + h2(py) = her(py) + her (py) (21)
oo [Mon (93) = Fiox (93) + ha(py) = a ()] = by et () = R ()] (22)

Therefore, these equations can be solved by employing the method of analytic continuation. It renders
_ (p?
hz (Z) = Cbhb1 (Z )> hcl (Z) = Ucbhm (Z) (23)

Step 4: repetition of steps 2 and 3

Applying the method of analytic continuation repeatedly across two interfaces L” and L just like that in steps 2 and 3, one
can find the increments of the complex potential functions hg,(z), hpn(z), hen(z) and hy.q(z) for n=2,3,4,.. .. The alternating
technique denotes such processes. Taking the summation of all the increments will form the complete solution of magnetic
potential function as

i han(2) ze$,
hz) = ijjl he(2) + hon(2)] Z €S 24)

Referring to Egs. (19) and (23), the functions hg,(z), hpn(z) and h,(z) can be expressed in terms of h,(z) for n > 1. By the use of
such expressions and Eq. (11), the function h(z) becomes

Ua i ha(2) ze S,
n=1
h@) = { 3 [n(@) + Vasla (%) zes, (25)
ho(2) + Vicho (é) + UgpVap é h, (%) zeS,
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The recurrence formula of h,(z) can be derived from Eqgs. (11), (19) and (23). It gives

Upcho(2) forn=0
hn+l (Z) {

2
Ve Vapha (g-iz) forn=1,2,3,... (26)

As mentioned in the previous paragraph, the corresponding complex potential function for a remote uniform magnetic
induction can be written as

hy(z) = Hoe "z (27)
where
By
Hy = 28
° AuOIurc ( )

Referring to Eqs. (12) and (20), the quantities V., and V,;, are found to be less than 1. Thus >, ;h,(2) is a convergent series
and the substitution of hy(z) into Egs. (25) and (26) gives rise to

UgpUpcHoe ¥

-5V, Ve 25
UpcHo —iy iy @
h(Z) _ 17%‘;@‘/@ (6 Z+ Ve Z) zesS, (29)
b

H0|: I/Z + (Vbc = + cbvabch ) @:| ze Sc

1- « Vcbvab

3. Magnetoelastic field

The components of traction force and displacement can be represented in terms of two complex potential functions ¢(z)
and (z) of magnetoelastic stress fields as [13]

- B
o iy = i@ + 2070 + 18 + 1 h@ ) - D) [ G 30)
et ity = 5 [002) - 6@ - 0 - 18 a2 31)

where G is the shear modulus, k= (4+3G)/(A1+G)=3 —4v for plane strain with v being the Poisson’s ratio [14] and
x(= 1y — 1) denotes the magnetic susceptibility. It is remarked that Eqs. (30) and (31) are continuous across the material
boundary and those terms related to body force are omitted in these two equations. The magnetoelastic stresses in polar
coordinates can be expressed with ¢(z) and (z) as [15]

e+ tu =2[¢@) + 5@ - L) (32)
(tr +it) = [¢2) + 9 (2)] - (jﬁ’g@ K@ (2)
@D+ bl @ - AR ) | 33)

Since there are circular interfaces in the present problem, it is convenient to rearranged Eqgs. (30) and (31) for a region
bounded by a circle r=c as

= @)+ 0@ - (S —Z)¢>’<Z> + <;?53)§;>h(z> - (%))

z z
e (’z% (%) itz (34)
oo 5 (5 Sl 1)) ner(()) s
where
o(z )f—¢( )+¥(2), n@) = Bh’(z)h/(z)dz (36)
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The corresponding magnetoelastic stresses in Eq. (33) becomes

> 2 2 _ 2
by + ity = ¢/ (2) —gw’(z) + (1 f%) P + (%4) 7@+ @) - z(j’jro’zfc)h )N %)
AU X o 7 (C? GUoy Z, , .77 (C? GUoy z 7
2(;L+Ozc)h( ){h( )—h <7>} ~ 7426 z@h <7> e Eh(z){

() (o)

Notice that both Egs. (34) and (35) are also continuous across the boundary of material interface. By applying the alter-
nating technique with the magnetic fields in Eq. (25), the magnetoelastic fields on the trimaterial cylinder under a uniform
magnetic induction can be found.

Step 1: analytic continuation across the interface L

In the first step, the regions S, and S, are regarded to be composed of the same material b and the region S. is consisted of
material c. The magnetoelastic potential functions can be represent as

Pom(2) N Wpm(z) z2€S,USy
P (2) = {a)cm(z) z€eS.

where the subscript 1b in hq,(z) denotes the first time to consider the continuity conditions across the interface L(i.e. r = b).
The complex potential functions ¢pm(z) and wpm(z) are holomorphic in the interior region S, U Sp, ¢cm(z) and w¢n(z) are holo-
morphic in the exterior region S.. Using Eq. (29) and replacing ¢ with b in Eqgs. (34) and (35), the continuity conditions of
traction and displacement across the material interface L render

(z

V
|
=
VRN
INYRRE
N———
—_

btz = { (38)

Son(00) + D) + -1y, ) — LB L) 05— ) + enl )

GC:uOXc / nuO(:urc + Xc)
oy 26, P )e(py) = =5 (0y) (39)
1 oo GotoXs s 1 ooy Gebole p
2G, Kb Pom(Pp) — Opm(Pp) /lb—l—Zthb(pb)hb(pb) =G, Kehem(Pp) — Ocm(Pp) 7o+ 2G. he(py)h, (pb) (40)

where p, = be'’ was defined in the previous section. The complex potential functions

Up.H, ; . a2
hy(z) = —20 (e*”’z+Vabe“f %),

1- g_; Vcbvab

b2 Ucb Vab chei”/ a_2> (41)

he(z) = Ho| e 7z + Vjee" — +
() 0( & 1__Vchvab z

are the expression of h(z) in Eq. (29) within the regions S, and S, respectively. In Eqs. (39) and (40), the function #(z) can be
expressed with the corresponding function h(z) as

/ h.(z)h.(z)dz s = a,b,c (42)

Before separating (39) and (40) into two parts which are holomorphic in both interior region S, U S, and exterior region S,
respectively, the estimation

b? ¥\ —(b? — _
lim @y (7) = lim {wgm (7> + Ybm (7” 2 ZPpn(0) + Yy (0) (43)

can be derived from Eq. (36) by replacing c with b. Such an estimation guarantees that @y (b* /) — z¢ i (0) is holomorphic in
the exterior region S.. Furthermore, when the applied magnetic induction impinges into the region S, the limiting values of
magnetoelastic complex potential functions ¢/, (z) and ¥, (z) at infinity satisfy [11]

, B By (1 . 1
Penl?) = F+2uo<71 u>+o<3>’

C o BTty 1
Vem(@) =T — 20 (i T2 ) + O(E) for |z] > 1 (44)
where
1 2Gw™> , 1, o 7
I'= Z(Gl+62)+ Trx’ F:_i(o'l_o'z)e 2 (45)
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in which the symbols ¢3° and ¢5° are the applied principal mechanical stresses along x; and x, directions at infinity and the
symbol

> =1m(dD/dz) (46)

denotes the rotation at infinity. Since the effect of magnetic loading is dominant in this study, those terms, which is related to
pure mechanical loading, is discarded in the following paragraph, i.e. I'=I" = 0.

Via the use of analytic continuation across the interface L, the potential functions ¢pmn(z), @Wpm(2), pem(z) and wp,(z) can be
solved as shown in the Appendix A. It is noted that the Dundurs parameters [16]

Olgbh + ﬁab Olap — ﬁab
Aap = Iy = 47
= 1 - :Bab = 1 + ﬂab ( )
with
o Go(Kp +1) = Gp(Ka + 1) Go(Kp — 1) — Gp(Ka — 1) (48)

T Ga(Kp + 1)+ Gp(Ka + 1)’ P T Ga(Kp + 1) + Gy(Kg + 1)

are introduced in this solving process.

Step 2: analytic continuation across the interface L’

In this step, it is assumed that the region S, is made of material a and the regions S, and S. are composed of the same
material b. The complex potential functions ¢p,(z) and wy,(z), which are holomorphic in the interior region S, U S, as shown
in Egs. (A6) and (A7), will induce two complex potential functions ¢qn,(z) and w.n(z) in the interior region S, and two com-
plex potential function ¢,o(z) and wye(z) in the exterior region S, U S.. Using Eq. (29) and replacing ¢ with a in Eqs. (34) and
(35), the continuity conditions of traction and displacement across the material interface L" give rise to

GGIHOXa h .uo(:“ra Xa)

¢am(pa)+wﬂm(pa) /1 +ZG (pa)h;(pa)_ na(pa)
G - . +
:%%H%%H%MMMWMﬁM%%%M%)&%f@(m (49)
b + 2Gp
1 ——  GalloXq 7
TGQ Kad)am(pa)*wam(pa) mhﬂ(pa)ha(pa)
= L kudom(pa) + Koo (Pa) — DB pp) — ra(pa) — 2F%o (0 (90 (50)
Zbebmu bPbho\Ma pm\Fb bo\Fa ;Lb+26bbubu

where p, = ae'’ and the function #4(z) is defined in Eq. (42). From the definition of w(z) in Eq. (36), we have

B2 2 b — @2 b _ 2
Do (2) =~ G (D) + V(@) = - D (2) + (@) + G5 (2) = Oy (2) + > () (51)
and hence
2 K2
O4(@) = () + 2 41,2) (52

which denotes the function with the circular boundary r = a corresponding to wy;,(z) with the circular boundary r = b.
By the use of analytic continuation across the interface L', the potential functions ¢pm(z), Wpm(2), dem(z) and wpm(z) are
derived in the Appendix B. It is noted that the complex potential function ¢po(z) and wpe(z) have the form

a? a? a
Pro(2) =K—, Op(2) =N1—+N3 5 z€5US (53)
where

e HayGo H | Mg at 2y @ @ = b 2 b’ —

K_MOHO{/"L;,—FZGIJ H2 |1-1g = ‘”’b“ 3Vare? b b +Vae e
H? Vg @ K.e2 V2 ey a*(a® — bZ) e2iy
114G — a il ¢ _ ab
e b(“r”Xb)Hg GotKoGe b2 2(GotKeGy) 2(1—Tw)(Go+55Ge)  B° ' 20Tap(Go+K5Ga)

Kce2” 1 H a?
2 + <Vbc + Ucb Vab )

(G +KCGh) (Gb+Kch) H bz
IM3(%+M%MQW?

H a®\*@—b*| (14 y)1,Ge
Hop?) b? Je+2G. Ho p? 2(Gy+15Ga)  H?
(54)

g (1+ Hbc)quWeZi"" - Habi(,urc +XC)

e—Ziy
- 2(1 M) (Gy+KGe)

(Vbc + Ucb Vﬂb (Vbc + Ucb Vﬂb
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Ny = ﬂoH(Z){

and

XaGaUZb 11y, Gp _ Xbi 2
et 26\ T et e e ) "7 26,0 Va)

KaGb 1 Ga 1 Gb a? H2 2=
+ (lurb + Xb)vab (Ga + KaGb - 1— Hba Ga + KaGb + 1_ b Gb T Kch b2 + Aab(l JrAbc):urcT
1 |x,Gpll H 2 aY\ Gyl + 1) H a? @?-b 1+Ap G
111 |7 + 26y Ho <1 Vi) TG G e UeVa g )\ e T T T, Gt Gy
(55)
_ 2 Zb Aap ey 1 Mt Ka A @° H_2 2iy
Ns = “OHO{ Kgb 26y 7+ 26y b4) 6 (Ga T KaGy Gyt KnGe )| pp Ve
Aﬂbcb(:urc + Xc)e—Zi",' H @ (12
+ G(Gb + KbGC) VbC + Ucbvab H b2 b2 (56)

Step 3: analytic continuation across the interface L

Just like that applied in step 1, the regions S, and S, are regarded as the same material b and the region S is made of mate-
rial c. Therefore, both complex potential functions ¢,o(z) and wpe(z), which are holomorphic in the exterior region S, U S; as
presented in Eq. (53), will cause two complex potential functions ¢1(z) and w4(z) in the interior region S, U S, and two com-
plex potential functions ¢.(z) and w.y(z) in the exterior region S.. Thus one can employ the continuity conditions of mag-
netoelastic fields across the interface L to find

Doo(0p) + W (Pp) + D1(Pp) + D1(py) = beo(Pp) + Weo(Pp) (57)
1 _— - 1 -
2G, [Kb%o(pb) 0h(Py) + K1 (Py) — 1 (Pb)} 2G. [Kc¢co(pb) Weo(Pp) (58)
where
b — a2

$o(2) (59)

is the function with circular boundary r=b corresponding to wmyo(z) on the circular boundary of r = a. Such a relation is sim-
ilar to that given in Eq. (52). The application of the analytic continuation on Egs. (57) and (58) renders

wﬁo (2) = wpo(2) +

_ bz b2
¢1(z)+wg0<z> a)c()( )+Clz—0 z€S,US (60)
bz
¢CO(Z)¢bO(Z)w_1<Z> +C12=0 ZESC (61)
(%) aol?) o
2G, + 2G. —Z—beO zeS,US (62)
R bZ
Kepeo(z) KoPpo(2) — @1 (7) Ciz
26, 2G, ~3g, 0 ZE€5 (63)
where
Ci = ¢(0) (64)

Via the use of Egs. (60)-(63), the complex potential functions ¢(z), ®1(z), ¢o(z) and wo(z) can be expressed with ¢o(z) and
wo(z) as

2 2 2
$1(2) = g [w_bo <b7> + bbiﬂf’bo (b ) +Ciz| zeS5,US (65)
(B B
01(2) = Ao i (7) +Co zeS,US, (66)
bo(2) = (1 4+ Ap)ppo(2) z € Sc (67)
2 (12 b2
0co(2) = (1 + ) [wbo(l) +— @+ C } zeS. (68)
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and

ch a? ch a?
17 1 =1 57 (%9
which can be found by substituting Eqgs. (53) into (65) and using Eq. (64). The fact that Nj; is real can be observed from Eq.
(55) and be applied in the derivation of Eq. (69).

Step 4: analytic continuation across the interface L’

Similar to that assumed in step 2, the region S, is composed of material a and the regions S, and S, are consisted of the
same material b. Thus the complex potential functions ¢¢(z) and w4(z) in Egs. (65) and (66) within the interior region S, U S;,
will induce two complex potential functions ¢q1(z) and w41(z) in the interior region S, and two complex potential functions
¢p1(z) and wy(z) in the exterior region S, U S.. Thus the continuity conditions of traction and displacement across the inter-
face L yield

C = (N1 + INy) =

Da1(Pq) + Da1(Pa) = ¢1(Pg) + DT (Pa) + b1 (Pa) + O (Py) (70)
1 I 1 - .
5e o9 (Pa) = Dar(Pa)| = 5 K1 (Pa) = DF(P) + K (Pa) — @1 (0] (71)
where
a@-b
03(2) = 1 (2) + T ¢4(2) (72)
The meaning of superscript a in wj(z) is identical to that adopted in Eq. (52).
a2
0a1(2) — d1(2) — wm( >+Ca1z Ciz=0 ze§, (73)
—(a? a?
bp1(2) + 0F (;) (Um( ) +Cuz—Ciz=0 zeSUS, (74)
Kaba(2) 109102 — 0)_171@) Caz Gz
2G, 2G, 3G, T2g, 0 Z€5 (75)
Koo (2) - 05(%) @a(%) cuz iz
3G, + 3G, fZGaJrZ—Gb:O zeS,US, (76)
where
Car = ¢ (0) (77)

As referring to the estimation in Eq. (43), the appearance of C; and C,; in Egs. (73)-(76) can assure that the terms
$(a?/z) — C1z and @q (a2 /z) — Cq1z are holomorphic in the exterior region S, U S..

By the use of Egs. (73)-(76), the complex potential functions ¢41(z), wq1(2), ¢p1(z) and wp1(z) can be expressed with ¢4(z)
and wq(z) as

$a1(2) = (1 + Aap)$1(2) + pCa1z €S, (78)
a — b? _ &
wa(2) = (1+ Ma) |01(2) + ——(2) - C— | +Ca—, z€Ss (79)
a? — b
®p1(2) = Iap w](z) Z(l)]( )—Clz zeS,US, (80)
—(a® —a —a
Op1(2) = Aay (7>+(1+Hba)C017—C17 z€S,US: (81)
and
2
Co= it Ame Ttde Mo o (82)

"1 Iy 1Ty 1 Mg p?

Based upon the alternating technique, one can apply the analytic continuation across two interfaces L and L repeatedly
just like that in steps 3 and 4 to find the additional terms ¢¢1(z), wc1(z) and ¢n(z), n(2), Pan(z), Wan(z), Pbn(2), Dpn(2), Pen(2),
wa(z)(n=2,3,4, ...). Thus the magnetoelastic potential functions ¢(z) and w(z) can be represented as
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Ban(@) + 3 (2 zes,

$(2) = dn@) + 3 @)+ 3 m(@) ZES, (83)
Pen@) + 3 dn(2) zes.
Oan(2) + 3 (2 zes,

w(z) = { Opm(2) + Z n(2) + i Wpn(2) ZESy (84)
Oem(2) + io Oen(2) z€S.

Similar to that given in Egs. (65) and (66), the complex potential functions ¢,.1(z) and wy.(z) satisfy

b*\ b* - a? b?
Pni1(2) = e |:a)—bn (7) + TZ(]%” <7> + Cn+12} ze S, Uy (85)
o b2 7b2
Wn41(2) = AcyPpn <7> + Cnin Z zeS,USy (86)

for n > 1. The corresponding potential functions ¢p,(z) and wp,(z) can be found as

_(a®\ @-b —(a?
Gpn(2) = gy {wn (?> + 2 ¢, (?) - an} z€S,US, (87)
/P .
Opn(2) = Aay by <7> + [(1 + Ipq)Can — cn] ~ ZESUS (88)

which is like that presented in Egs. (80) and (81). The substitution of Eqs. (86) and (88) into (85) and (87) yields the recur-
rence formula of ¢,.+1(z) and ¢py(z) forn > 1 as

z

b’ b’ @b (@
AcbPpn-1) (azz) + Gy (az - 1)2 + T‘Z(bn <Z>} (90)

The comparison between Egs. (85)-(88) and Egs. (65), (66), (80) and (81) reveals that two groups of equations possess the
similar form. This means that one can obtain one group of equations from the other group. For example, the replacement of
the subscripts 0 and 1 in Egs. (65) and (66) with n and n + 1, respectively yields Egs. (85) and (86). Therefore, the expression
with subscript 1 can be extended to that with n. The result that G, is real and the relation Gy, = (1 + A4,)C/(1 — II,) can be
obtained as referring to Egs. (69) and (82). Applying such results and substituting Eqgs. (53) and (64) into (65), the functions
¢n+1(2) and ¢pn(z) in Egs. (89) and (90) take the form

2 2 b2 ) . b2
§bn+l (Z) = ch{Aab¢n <%Z> + [(1 + Hba)Can - Cn] Zﬁz + bzazﬁbbn( ) + CnHZ} (89)

Pbn (Z) =g

S
$ni1(2) = Craz + En+lz3> bpn(2) = ?n forn >0 (91)

The corresponding recurrence formula of the coefficients Cy,+1, E;+1 and S, can be obtained as

211 (Agp + py) a? ab b —a®_—
Cn+1 = (1 —CHCb;(l — IYaba) ?Cny En+1 =1l AabﬁEn _Tsn 3

2
Sp =g {Acb%an +3(a® - bz)aZET} forn > 1 (92)

It is convenience to introduce the following definitions

R:iCrH»ly P:iEﬂ+]7 Q:isn (93)
n=0 n=0 n=0
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Hence taking >, for Eq. (92) and using Eq. (69) give rise to

o 2N
1 H pV
R= chﬂ = 1-— chbt() bnb+17ba) a (94)
n=0 (M) (T-TIq) b2
ab - - —
P—E =1y [Aabbep—be(Q—so)} (95)
a? =
Q —So = Iy {Asb?q +3(a® — b2)a2P] (96)

where S, = Ka? can be obtained from Eqs. (53) and (91) and E; = 1, [)1\]3(14/b6 — K(b* — a*)a?/b%| can be found from Egs. (53),
(65) and (91). In order to provide the convergence condition of (110), it is convenient to use x, = K, = 1.8 (with v, = v, =0.3)
for the typical materials. Via the use of Egs. (47) and (48) together with a < b, one can estimate the ratio in Eq. (92)

20y (Aab + Mpa) @* _ 2(Ge = Gp)[(Kp — 1)Ga — (Ka — 1)Gp] @® _ 10(Gc — Gp)(Ga — Gp) @*
(1~ Ha)(T —Mpo) B> (K5 — 1)Ge + 2Gy][(Ka — 1)Gp + 2G| b2 (2Ge + 5G3)(2Gy + 5Ga) b2
10(Gc - Gb)(ca - Gb) a?
< 10G.C. W <1 (97)

which can assure the convergence of the series in Eq. (94). Similarly, the following estimations

_ Ga - Gb Ga
Ha G Kb + Gy < GaKp <1,
2 _ _ 2 2
Hab/lcba Gy — Gy, Gekp — Gk a G, Gikpa 1 (98)

b? Gakp+ Gy Gokc+Ge b Giky G b?

and [, 1T Aqa?/b? < 1 can be also found from Eq. (47) and (48) with a < b. Thus the series P and Q in Eq. (93) are convergent
and can be solved from Egs. (95) and (96) as

N (B0

(1= Moo %) (1= Moy Aap be) 3HabHd, @by
_ [3Habﬂcbz—§ aza;zszg + <1 — I pAgp Z—G>K] (12
(1= Had0 %) (1 - Hopdw ) - 3Maplls “"

(99)

The summation of the complex potential functions ¢,(z) and ¢,(z) can be obtained from Egs. (91), (93), (94), and (99) as

o 50 o’ N,z
3 =114 B2 1
Z $n(2) = Z(Cnﬂz + En+1z )=Rz+Pz = 1_ ZHC:( ; Agp+1Tp) a?
n=1 n=0 (1 Hep)(1-1q) bz
[(1 - ab/lcb 2) ] cb bg 23
+ @2 (@-P2a g2 (100)
<1 - HabAcb b7> (1 - ch/lab bT) - 3Ijabljcb g
- <5 0 3wl s S N+ (1~ Mo da 5)K g2
Y tm@) =) T=7= - 7 - (101)
n=0 n=0 <1 - HabAcb b_2> (1 - chAab gfs) 3IYabIch

The solutions for the summation of the corresponding complex potential functions > .7 ;@ (2), > p 0@pn(2), > peq1Pan(2)s
> 1 Wan(2), > i ben(2) and >0 we(z) are provided in the Appendix C. Putting Eqs. (A5)-(A8), (A14), (A15) and Egs.
(98)-(101) into Egs. (83) and (84), the solving process in finding the complex potential functions ¢(z) and w(z) is completed.
Therefore, the magnetoelastic stresses then can be derived from Eqs. (32) and (33).

4. Special cases
4.1. Ferromagnetic thin shell

For the special case that a ferromagnetic cylindrical thin shell subjected to a uniform magnetic induction, the regions S,
and S. become air and S, is a ferromagnetic medium with t/a, t/b < 1. Where t(=b — a) is the thickness of the thin shell. Thus
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Ura= Ure=1 and pp>> 1 can be taken. Substituting such data into Eqs. (12) and (20) yields Uy, = Ugp ~ 2, Vg =V ~ 1 and
Upa = Upe ~ 2ty < 1, Vg = Vpe =~ —1. It is convenient to introduce R=(a + b)/2 ~a, b as the mean radius of the thin shell.
The estimation H/Hy =~ (2/u)/(1 — a?/b?) =~ (2] rp)/(2Rt[b?) ~ R|(p:pt) < 1 is adopted in the following derivation as that sug-
gested by Lin and Chen [12]. Furthermore, one can find G,=G.=0 for the air medium in S, and S, and obtain
Hup =1 = Agp = Agp = —1 via Eqs. (47) and (48). Notice that those terms T and W in Eq. (A5) are induced by the jump of mag-
netic properties across the interface when the applied magnetic induction comes from the air at infinity to the outer region
Sc. Thus both terms disappear for the present case that the outer region S. is composed of air. Applying the above estimations
and y.= i — 1=0 on Egs. (A6), (54)-(56) and discarding those terms with order 1/, and t/R, one can obtain
232iy 53 2iy 2 2 A—2iy

¢bm(z)z“°TH°Z_%i, 1<z<ez —1)MOH§, Nﬁz—'uOTHO, Nw% (102)
Since the cylindrical shell is axis symmetric, it is convenient to assume that the applied magnetic field propagates along x-
axis, i.e. y = 0. Substituting Eq. (102) into Eqs. (100) and (101) with the above estimations yields

1a2le [(1——)N3+“ K} b—gz3

;d)n(z): e (_£)<1_£>_3<a2—bz>a2a7

»? o
H2 2\ poH2 2 2 pioH2 6
@ 4 a
T (1 —5—2)
az a‘Z
~ 1M  gry 12R63)’
6 42 6
3a a bN3+(17276>I< a2

;d’bn(z) = (1 a2)< B a6> _3 (@b 7

b? I3 bs

(- - (- () e e @ (103)
( 02)4 z 4R z

bZ

Using Eqgs. (29), (83), (102) and (103) with Upe =~ 2/up < 1, Hg = Bo/tto, @ = R — t/2 and b = R + t/2, the tangential stress on the
outer surface of the cylindrical thin shell can be found as

t ~ {2 [¢2)+ T@] ~ LAW @I s ~ 2[be) + 7T

LH b>  a*b’e? +,uOH(z)b6 a 2 b ath’e +,u0H(2,b6 a
ot 8Rt  4R%f3 4R°t3 pleio 0UO\8Rt 4R’ 4R’ pPe-2i0

2 p2
~ 2% I:—z cos(20) (104)
0

which is in accordance with that provided by Lin and Chen [12]. Notice that the radial stress t,, is much small than t,4, on the
surface of cylindrical shell.

4.2. Ferromagnetic medium with a circular hole

In the present case, the regions S, and S, are air and S. is made of a ferromagnetic material. Thus p,q = typ = 1 and g, > 1
can be applied. The substitution of such data into Eqgs. (12) and (20) yields Ugp = Upg =1, Vgp = Vg = 0, Upc =~ 2, Ugp =~ 2/ thre < 1,
Vie = 1 and V, ~ —1. Thereafter, the ratio H/Hy ~ 2 can be found. Furthermore, G, = G, = 0 can be taken for the air medium in
Sq and Sp. And hence Eqs. (47) and (48) will result in ITy, = ITpg = Agp = Apg = 0 and I, = Ap- = —1. Putting the above estima-
tions into Eqs. (54)-(56), (A8) and (A9), taking u,. > 1 for the ferromagnetic material on S, and neglecting those terms which
are much smaller than the dominant terms render

2 2
Pem (Z) ~ NOH%CHé (TZ — We?” bz> , Wem (Z) = /’LOIu%cH(ZJ (WeZi“/Z - sz) )

K. N1, N3 ~ o1, Hg (105)
Applying Egs. (28), (83),(103), (A19) and (A20), the magnetoelastic potential functions ¢(z) and w(z) on S, can be obtained as

2 2 2 2
b(2) ~ By (Tz Wezn’b?), w(z) = 5 (Wez"z Tb> zeS, (106)
0 0
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The corresponding y/(z) can be derived by the use of Egs. (36), (84), (105), (106) and (A7) with the replacement of ¢ by b in Eq.
(36). It gives

b2 . Bé _2iy o b2 b2 Bé - b2
!//(Z)—w(z)—7¢>(z)—u—0<We 2-T— |- 2 T+W5

2 2 2 2
_B [(WeZin—Tb—) —b—z(Tz+Wb—>} zeS. (107)
Ho z V4 z

This result is identical to that given by Lin [11] with a=b and I = I" =0 in Egs. (4), (47), (48) and (71) of that paper.

5. Numerical results and discussion

The numerical results of this work are displayed with figures in this section to illustrate the influence of relevant param-
eters on the magnetoelastic stress fields. It is assumed that pp/tra = U/ tre» Gp/Gq = Gp/Ge and vq = v, = v, = 0.3 in the follow-
ing paragraph. Furthermore, the magnetic induction progresses along x-axis (i.e. y = 0) and the magnetoelastic stresses are

expressed in a dimensionless form as divided with Bj/2,. Notice that the typical magnetic induction By=1T (tesla) will
induce the magnetic stress Bj/2f, = 58 psi (0.4 MPa). The variations of the dimensionless radial magnetoelastic stress
tr/ (Bé /2 ,u0> and the dimensionless tangential magnetoelastic stress ty,/ (Bg /2;10) at point A are depicted in Fig. 2. The ab-

scissa axis is presented with log, scale and the values of relative magnetic permeability u,, and p, are assumed to be 1 in
this figure. Notice that the value of relative magnetic permeability for a ferromagnetic material, a paramagnetic material and
a diamagnetic material is much greater than 1, slightly greater than 1 and slightly less than 1, respectively. Therefore, the
extent of the ratio f.p/to(=L4b/tire) in Fig. 2 is taken to be higher that 1 from practical point of view. As shown in Fig. 1,

the point A is located on the surface of region S, with 6 = 0. Thus the radial magnetoelastic stress t,./ (B(Z, /Z,uo) is this figure
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Fig. 2. The variations of dimensionless magnetoelastic stresses at point A with respect to the ratio of magnetic susceptibility p.p/urq under piq= ttre=1,
bja=1.01 (a) tﬂ/(Bé/Z,uU) (b) tm,/(Bé/Z,uO).
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can be regarded as the interfacial normal stress between the regions S, and S.. Since the point A falls on the x-axis which is
the symmetric line of the region S, for the present case with y = 0, the interfacial shear stress ¢,/ (B?, /2 ,u0> at point A equals
zero. It is observed from Fig. 2 that higher G,/G(=G,/G.) ratio will cause lower values of the magnetoelastic stresses
tm/ (B(Z)/Zuo) and tyy/ <B§/2,u0> when the ratio G,/Ga(=Gp/G.) < 0.1. Once the ratio G,/Ga(=Gp/Gc) > 1, higher G/G4(=G/G,) ratio

may induce higher values of the magnetoelastic stresses ¢/ (Bé /2 ,uo) and ty/ (BS /2;10). In the intermediate region 1 > G/

G4(=Gp/G,) > 0.1, the variation of the magnetoelastic stresses are not significant. The above observation denotes that the dif-
ference of the magnetic property G between the region S, (or S¢) and the region S, may cause higher value of the radial and
the tangential magnetoelastic stresses. Furthermore, when the ratio u./ it q(=:s/ ) moves from 1 to a higher value, the
magnetoelastic stresses also increase. This means that the difference of the magnetic property pu. between the region S,(or
S¢) and the region S, may evoke the rising of the radial and the tangential magnetoelastic stresses. From Fig. 2a, the value of

the dimensionless radial magnetoelastic stress t,/ (Bé /2 ,u0> with pp/ tra(=ten/ tre) = 50 and G/ G, (or Gp/Gc) = 0.02 is found to

be 2000. From the above estimation of Bj/2u, = 0.4 MPa under the applied magnetic induction By = 1T, this value corre-
sponds to 800 MPa of real radial stress at point A. For practical application, such a stress level is considerable for stainless
steel (AISI 302) with tensile strength of 860 MPa. On the other hand, the dimensionless tangential magnetoelastic stress

t,;,,/(B?,/Z,uO) with g/ tra(=tp/ tre) = 100 and Gp/G, (or G,/G.) = 50 equals 288. Such a value is corresponding to 860 MPa

of real tangential stress at point A under the applied magnetic induction By = 2.73 T. Thus the tangential stress at point A
is over the tensile strength of stainless steel once the strength of applied magnetic induction By is greater than 2.73 T. This
is the critical value of the applied magnetic induction for the present condition with S, made of stainless steel. Inside a toroi-
dal magnetic fusion reactor, there is a large magnetic induction (>5 T). From the point of view for practical application, the
magnetoelastic stresses inside the intermediate region S, of a three-phase composite cylinder become dominant when the
ratios W/ trq (OT U/ tre) @and Gp/G, (o1 Gp/G.) increase over a certain value. Thus the failure analysis and prevention of the
composite structure with higher g,/ ttyq (01 /i) and Gp/G, (or Gp/G,) ratios need to be considered, especially for a struc-
ture under an environment with strong magnetic induction.
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Fig. 3. The variations of dimensionless magnetoelastic stresses at point A with respect to the ratio of shear modulus G,/G, under G, =G, trq= tUrc=1
and bla=1.01 (a) tu/ (B /24 (b) tu/ (B3/241)-



C.-B. Lin et al./International Journal of Engineering Science 48 (2010) 529-549 543

4000
rs (a)
3300 -~ G/G=0.03, i/l =20
c e GY/G=0.03, 1/, =40
3000 — GY/G=0.03, 1 /thy =100
3 o —— U/lhra =50, Gy/G,=0.01
o 2500 = e U/lls =50, G/G,=0.03
g : ¥ U/l =50, G/G=0.05
< 20003 skt ’
1500
4
1000
500 .
0 5
1 2 3 4 5 6 7 8 9 10
My
200 )
') - Gi/Ga=0.03, tn/llra =20
150 e GY/G=0.03, f1:/ly =40
- —— GY/G=0.03, i/l =100
~ B —— U/l =50, G/G,=0.01
S [ —a M/ =50, Gi/Gy=0.03
S 100 —¥— U/l =50, G/G,=0.05
3 [
L
50
A
4
Q
A
0

Fig. 4. The variations of dimensionless magnetoelastic stresses at point A with respect to the magnetic susceptibility y,. under G, = G, trq = ttrc and bja =
1.01 (a) trr/(Bg/zuo) (b) t(,,,/(Bﬁ/Zuo).

Fig. 3 displays the variations of the dimensionless magnetoelastic stresses t,/ (B(z) /2 ,u0> and ty/ (B(Z) /2,110) at point A with
respect to the ratio G,/G4(=Gp/G,) under b/a = 1.01 and various p,p/ (=] ttrc) values. The abscissa axis in’Fig. 3 is also de-

picted with log;o scale as that adopted in Fig. 2. From Fig. 3, the feature that the magnetoelastic stress ¢,/ (Bg /2,110) increases
with the increase of 14/ tra(=trb/ ttrc) can be found. Except for the curve with tp/ tro(=tb/ tire) = 1, which leads to very small
ter/ (B(Z) /2 ,u0>, the other curves in Fig. 3a reveal that the magnetoelastic stress t./ (Bﬁ /2 ,uo> increases with the ratio
Gp/Ga(=Gp/G.) when this ratio is less then 1. Once the ratio G,/G4(=G,/G,) is greater than 1, the variation of the magnetoelastic
stress t./ (Bg /Z,uo> on this ratio becomes insignificant. The curve in Fig. 3b with /(= ttrc) = 1 also has very small

too/ (Bé /2 ,uo) and the magnetoelastic stress t4/(Bg/214,) of the other curves decrease with the increase of ratio Gp/G4(=Gp/

G.) for Gp/G, < 0.1 and increase with the ratio G,/G, for further increase of this ratio. It is interpreted that the materials in
Sq and S, with higher stiffness than that in S, may provide stronger restriction on the deformation of annular region S,
and may cause higher interfacial radial stress and tangential stress. On the other hand, the material in S, can extend and
induce higher tangential stress while its stiffness becomes much higher than that in S, and S.. With g/ ta(= b/ trc) = 50

and Gp/G, (or Gp/G.)=0.01, the dimensionless magnetoelastic stresses tﬂ/(B§/2u0> and t99/<B§/2u0> are found to be

3600 and 160, respectively. Such results lead to the real magnetoelastic stress t,=12,960 MPa with Bp=1 T and
tyo = 860 MPa with By = 3.665 T. Such values of magnetoelastic stresses are considerable in the practical application as men-
tioned above. The value of 860 MPa equals the tensile strength of stainless steel (AISI 302). Therefore, the value 3.665 T of By
can be viewed as the critical value for the present condition with S, made of stainless steel.

The variations of the dimensionless magnetoelastic stresses ¢t/ (BS /2 ,uo) and tg/ (Bg /2 ,uo) at point A on the relative mag-

netic permeability u,(=p:q) with b/a=1.01 under various pp/ (=l tre) and Gp/Gy(=Gp/G.) ratios are presented in Fig. 4.
One can find that both the magnetoelastic stresses decrease with the increase of y,.. Furthermore, the magnetoelastic stres-
ses also increase with the ratio p,/ 1 under a fixed value of G,/G, and decrease with the increase of ratio G,/G4(<1) under a
fixed value of pp/ . This results are consistent with Figs. 2 and 3 that the difference of material properties y, and G in S,
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Fig. 5. The variations of dimensionless magnetoelastic stresses at point A with respect to the ratio b/a under G,= G, Urq=tre=1 (Q) trr/(Bé/Z,uU)
(b) tuo/ (B}/21t0)-

(or S¢) and S, may evoke the raise of the magnetoelastic stress on the interface. Fig. 5 depicts the variation of the dimension-
less magnetoelastic stresses t,./ (Bg /2,110) and tg/ (Bé /2,u0) at point A with respect to the radius ratio b/a under various p/

Ura(=tn] i) and Gp/G4(=Gp/G,) ratios. It is observed that both the magnetoelastic stresses decrease with the increase of b/a
ratio. This means that thicker intermediate region S, under a fixed radius a will reduce the magnetoelastic stresses at point A
on the interface. In analogy to Fig. 4, the magnetoelastic stresses increase with the ratio p,/ 1, under a fixed value of G,/G,
and decrease with the increase of ratio G,/G,(<1) under a fixed value of p,/ 1, can be also found from Fig. 5. The estimation
of the real magnetoelastic stresses corresponding to the dimensionless stresses in Figs. 4 and 5 are similar to that provided in
the previous paragraph for Fig. 3.

The variations of the dimensionless magnetoelastic stresses t,./ (Bg /2,uo) s too/ (B% /2 ,uo) and t,y/ (Bg /2,uo> with respect to

the circumference angle 6 under 4 = = 1, bfa = 1.01 and various pp/ tra(=ts/ thre) and Gp/Go(=Gp/G.) ratios are depicted in
Fig. 6. It is found from this figure that the curves possess period n(or 180°). This result can be interpreted as that the expres-
sions of ¢(z) and w(z) on S, in Eqs. (83) and (84) with Egs. (100), (101), (A17) and (A18) have dominant terms of z*, zand z ™'
for the present case. The derivatives of such terms become 22, z° and z 2, respectively and hence the magnetoelastic stresses

in Eqs. (32) and (37) have period 7. The values of the magnetoelastic stresses t,./ (B(z) /2 ,u0> and ty,/ (BS /2;10) in Fig. 6 increase
with the ratio p,4/tt:q under a fixed value of G,/G, and decrease with the increase of ratio G,/G,(<1) under a fixed value of ftp/ g
in accordance with Fig. 5. Furthermore, the values of magnetoelastic stress t.,/ (Bﬁ /2 ,u0> at 0 = 0 equal zero in this figure. Such a

result guarantees that t,y/ (B?, /2 uo) at point A vanishes as mentioned above. The estimation of the real magnetoelastic stresses

corresponding to the dimensionless stresses in Fig. 6 are also similar to that provided in the previous paragraph for Fig. 3.

From the estimation of the real magnetoelastic stresses in the illustrated case of Figs. 2-6, it is concluded that the applied
uniform magnetic induction may evoke significant magnetoelastic stresses on a three-phase composite cylinder with higher
values of the G,/G4(=Gp/G¢), Wb/ Ura(=b] ) Tatios and lower values of the p,o(=c), b/a ratio. Here the higher values of the
Gp/Ga(=Gp/G.) and pyp/ tra(=pr/ thr) ratios denote the deviation of the material properties between different phases becomes
larger. By comparing the stresses of this study with the tensile strength of real material, such as stainless steel, the critical
value of the applied magnetic induction can be obtained. From the practical point of view, such estimations that reveal the
effect of various parameters on the real magnetoelastic stresses are necessary.
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Fig. 6. The variations of dimensionless magnetoelastic stresses with respect to the circumference angle 0 under = u,c=1, bja=1.01 (a) trr/<B§/2,uo)
(b) oo/ (BE/210) (©) tu/ (B} /25 ).

6. Conclusions

By applying the alternating technique and the method of analytical continuation on the complex form of magnetoelas-
ticity, the magnetic and the magnetoelastic fields on a three-phase composite cylinder subjected to a remote uniform mag-
netic induction are derived in this paper. It is noted that the boundary conditions at both interfaces between three phases
can be satisfied subsequently. Thus the solutions of complex potential functions can be expressed in a series form. With the
typical data of material properties, the series solutions are found to be convergent and then tend to the exact solutions. The
numerical illustrations of magnetoelastic stresses at outer face of intermediate phase are shown with figures to present the
effects of various parameters. Furthermore, the estimations of real magnetoelastic stresses corresponding to the dimension-
less results in the illustrated figures are provided and compared with the strength of real material data to make the present
study meaningful in practical application. By comparing the results of this study with the literature under special cases, such
as cylindrical shell in vacuum and an infinite matrix with a circular hole, the correctness of this work can be guaranteed.
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Appendix A. The solving process of ¢p(2), ®pm(2), Ppem(z) and wpy,(2)

By applying analytic continuation across the interface L, it is found from Egs. (39) and (40) that
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The symbol H, which is introduced for the sake of convenience, can make the expression in the derivation process more com-
pact. Solving Egs. (A1)-(A4), one can obtain
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Appendix B. The solving process of ¢om(z), Wam(2), Ppo(z) and wpe(2)
Applying the analytic continuation on Eqgs. (49) and (50) and using Egs. (47), (48), (A6) and (A7) yield
U2 H? G Lo ), H* o 2
bon(2) ~ bun(@® 0 Z) ﬁ‘“fﬁixhz - (U Apop Tz - SR (1 vz - Ve
(@ = b°) [ y,Gp T H? , a* Go 2, @ 2 Ha\]| z
1-— ch /]vb + zcb 1- V b4 + Gb 4 Kch (:urb + Xb)H Vab 2 (/’ch + Xc)Ho Vbc + Ucbvab HO b2 a2
2 =2iy »3
4 Mok +2)cb)H Vab <2 B vabg z > Coz—0 zeS, (A10)
__ (@ ( —H/)U2 Go o)y Vap . @2 S
¢b0(z) + Wpm (7) Wam ( 7 ) Fra a~—ab + /L;ui ZbG; IMOHzeZl/ 7 + (1 + Hbc).uo/lch?)WEm’ 7
 Ho(a@® - b*) [ 3, Gy Il o H>V ape? a Gy 22 a2y @
1-1I, 126 b 2(Gs + koG | T I VareT
2, 2ip H @\ @\ 1 folity + ) H az
w—<ﬁ) 2 12 212 2 3
Ka®Pam (Z) Kb¢bm(z) b0\ z ,UOXaUabH Kb(l + AbC):UO:urcHOT HOXbH 2 —2iy Z
- + -5 zZ— Z+ 5 1-V)z—Vgpe "=
2G, 2G, 2G, 2(Ag + 2Gy) 2G, 2(p +2Gp) a2
ﬂo( 2) 15Go [T H? 1_V2 a: + Gp
ZGb(l — ) | 7+ 2Gp D) " Gy + KpGe
a? H a® z Cum
|:(:urb i Xb)HZVab? (L, + XC)HZ (Vbc + UCbVabH bz)} }E 3G, “z=0 zeS, (A12)
J— 2 —_— 2 R
Kpdpo(z)  @om (£) @ (%) (4 o) po i HoWe? @ oy, H?Vape™ @
2G, 2G, 2G, 2G, z 20 +2Gp) z
(@ =B [3%,GollaH Ve ¢t Gy
ZGb(] — ch) Ay + 2Gp b4 Z(Gb + KbGC)
- - (A13)

2 2
a 1 Cunm
}}z ZGaZ_O zeS,uUS,

H a?
(U, + Xb)szgbe —— (e + XC)Hée"z” <Vbc + UcbVabI_TO ?> W




548 C.-B. Lin et al./ International Journal of Engineering Science 48 (2010) 529-549

where

Cam = Gy (0)

(A14)

It is found from Eq. (47) that T and W are real. By the use of this feature and Eqs. (A6) and (A7), four complex functions ¢qm,(2),

Wam(2), Ppo(z) and wpe(z) can be solved from Eqs. (A10)-(A13) as
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Notice that the solutions of the complex potential functions ¢,o(z) and wye(z) are shown in Egs. (53)-(56).
Appendix C. The solving process of Y~ n(2). Y, 0 (2). Yo 10an(2). Y0 10an(2). Y 10en(2) and Y o (2)
Adding all the terms with different n in Eq. (86) and using Egs. (94) and (101) yield
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The general expression of the complex potential functions ¢s,(z) and w,(z) with s = a, b, c can be found by replacing the sub-
script 0 in Egs. (67), (68) and 1 in Egs. (78)-(81) with n. Applying these equations gives rise to
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Notice that the real feature of C, and the relation C,, =(1+ A4,)C,/(1 — IIp,) are used in the derivation of Egs. (A19) and
(A20).

References

[1] S.R. Iyengar, R.S. Alwar, Stress in a layered half-plane, ASCE J. Eng. Mech. Div. 90 (1964) 79-96.
[2] W.T. Chen, Computation of stresses and displacements in a layered elastic medium, Int. J. Eng. Sci. 9 (1971) 775-800.
[3] H. Bufler, Theory of elasticity of a multi-layered medium, J. Elast. 1 (1971) 125-143.
[4] W. Lin, L.M. Keer, Analysis of a vertical crack in a multi-layered medium, J. Eng. Ind. Trans. ASME 56 (1989) 63-69.
[5] S.T. Choi, Y.Y. Earmme, Elastic study on singularities interacting with interfaces using alternating technique: Part II. Isotropic trimaterial, Int. J. Solids
Struct. 39 (2002) 1199-1211.
[6] Y. Benveniste, G.J. Dvorak, T. Chen, Stress fields in composite with coated inclusions, Mech. Mater. 7 (1989) 305-317.
[7] H.A. Luo, An edge dislocation in a three-phase composite cylinder model, J. Appl. Mech. Trans. ASME 58 (1991) 75-87.
[8] T.Honein, E. Honein, G. Herrmann, Circularly cylindrical and plane layered media in anti-plane elastostatics, ]. Appl. Mech. Trans. ASME 61 (1994) 243-
249.
[9] C.K. Chao, F.M. Chen, M.H. Shen, Circularly cylindrical layered media in plane elasticity, Int. ]. Solids Struct. 43 (2006) 4739-4756.
[10] G.A. Maugin, M. Epstein, C. Trimarco, Theory of elastic inhomogeneities in electromagnetic materials, Int. ]. Eng. Sci. 30 (1992) 1441-1449.
[11] C.B. Lin, On a bounded elliptic elastic inclusion in plane magnetoelasticity, Int. J. Solids Struct. 40 (2003) 1547-1565.
[12] C.B. Lin, S.C. Chen, Magnetoelastic stresses in a circular shell subject to a point magnetic source, Int. ]. Appl. Electromagn. Mech. 18 (2003) 199-216.
[13] S.C. Chen, C.B. Lin, On multiple circular inclusions in plane magnetoelasticity, Int. J. Solids Struct. 43 (2006) 6243-6260.
[14] A.H. England, Complex Variable Methods in Elasticity, Wiley Interscience, New York, 1971.
[15] C.B. Lin, S.C. Chen, J.L. Lee, Explicit solutions of magnetoelastic fields in a soft ferromagnetic solid with curvilinear cracks, Eng. Fract. Mech. 76 (2009)
1846-1865.
[16] J. Dundurs, Concentrated force in an elastically embedded disk, J. Appl. Mech. Trans. ASME 30 (1969) 568-570.



